This paper investigated the preparation of 3D RGO/CdS hydrogels by a facile hydrothermal process, the morphology control of CdS (ball-like, rod-like, needle-like) in 3D structures, and their application in electrochemical energy storage.
Area minimization of mixed-polarity Reed-Muller (MPRM) logic circuits is an important step in logic synthesis. While previous studies are mainly based on various artificial intelligence algorithms and not comparable with the results from the mainstream electronics design automation (EDA) tool. Furthermore, it is hard to verify the superiority of intelligence algorithms to the EDA tool on area optimization. To address these problems, a multi-step novel verification method was proposed. First, a hybrid simulated annealing (SA) and discrete particle swarm optimization (DPSO) approach (SADPSO) was applied to optimize the area of the MPRM logic circuit. Second, a Design Compiler (DC) algorithm was used to optimize the area of the same MPRM logic circuit under certain settings and constraints. Finally, the area optimization results of the two algorithms were compared based on MCNC benchmark circuits. Results demonstrate that the SADPSO algorithm outperforms the DC algorithm in the area optimization for MPRM logic circuits. The SADPSO algorithm saves approximately 9.1% equivalent logic gates compared with the DC algorithm. Our proposed verification method illustrates the efficacy of the intelligence algorithm in area optimization compared with DC algorithm. Conclusions in this study provide guidance for the improvement of EDA tools in relation to the area optimization of combinational logic circuits.
Special accelerator architecture has achieved great success in processor architecture, and it is trending in computer architecture development. However, as the memory access pattern of an accelerator is relatively complicated, the memory access performance is relatively poor, limiting the overall performance improvement of hardware accelerators. Moreover, memory controllers for hardware accelerators have been scarcely researched. We consider that a special accelerator memory controller is essential for improving the memory access performance. To this end, we propose a dynamic random access memory (DRAM) memory controller called NNAMC for neural network accelerators, which monitors the memory access stream of an accelerator and transfers it to the optimal address mapping scheme bank based on the memory access characteristics. NNAMC includes a stream access prediction unit (SAPU) that analyzes the type of data stream accessed by the accelerator via hardware, and designs the address mapping for different banks using a bank partitioning model (BPM). The image mapping method and hardware architecture were analyzed in a practical neural network accelerator. In the experiment, NNAMC achieved significantly lower access latency of the hardware accelerator than the competing address mapping schemes, increased the row buffer hit ratio by 13.68% on average (up to 26.17%), reduced the system access latency by 26.3% on average (up to 37.68%), and lowered the hardware cost. In addition, we also confirmed that NNAMC efficiently adapted to different network parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.