Lithium metal batteries have been considerably limited by the problems of uncontrolled dendritic lithium formation and the highly reactive nature of lithium with electrolytes. Herein, we have developed functional porous bilayer composite separators by simply blade-coating polyacrylamide-grafted graphene oxide molecular brushes onto commercial polypropylene separators. Our functional porous bilayer composite separators integrate the lithiophilic feature of hairy polyacrylamide chains and fast electrolyte diffusion pathways with the excellent mechanical strength of graphene oxide nanosheets and thus enable molecular-level homogeneous and fast lithium ionic flux on the surfaces of electrodes. As a result, dendrite-free uniform lithium deposition with a high Coulombic efficiency (98%) and ultralong-term reversible lithium plating/stripping (over 2600 h) at a high current density (2 mA cm−2) are achieved for lithium metal anodes. Remarkably, lithium metal anodes with an unprecedented stability of more than 1900 h cycling at an ultrahigh current density of 20 mA cm−2 are demonstrated.
Functional nanonetwork-structured polymers with inbuilt poly(acrylic acid) linings for enhanced adsorption toward basic dyes and heavy metal ions were fabricated based on the union of SI-ATRP and hypercrosslinking.
Benefiting from a high-porosity interconnected structure and lithiophilic SiOx nanodomains, CNT@SiOx–C shows great advantages as 3D hosts toward stable Li plating/stripping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.