Parkinson's disease (PD) is one of the most common agerelated neurodegenerative diseases. Inhibition of monoamine oxidase-B (MAO-B), which is mainly found in the glial cells of the brain, may lead to an elevated level of dopamine (DA) in patients. MAO-B inhibitors have been used extensively for patients with PD. However, the discovery of the selective MAO-B inhibitor is still a challenge. In this study, a computational strategy was designed for the rapid discovery of selective MAO-B inhibitors. A series of (S)-2-(benzylamino)propanamide derivatives were designed. In vitro biological evaluations revealed that (S)-1-(4-((3-fluorobenzyl)oxy)benzyl)azetidine-2-carboxamide (C3) was more potent and selective than safinamide, a promising drug for regulating MAO-B. Further studies revealed that the selectivity mechanism of C3 was due to the steric clash caused by the residue difference of Phe208 (MAO-A) and Ile199 (MAO-B). Animal studies showed that compound C3 could inhibit cerebral MAO-B activity and alleviate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neuronal loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.