Manganese (Mn) is an essential micronutrient in plants. However, excessive Mn absorption in acidic and waterlogged soils can lead to Mn toxicity. Despite their essential roles in Mn homeostasis, transcriptional and post-transcriptional modifications of Mn transporters remain poorly understood. Here, we demonstrated that high-Mn stress induces an obvious Ca 2+ signature in Arabidopsis. We identified four calcium-dependent protein kinases, CPK4/5/6/11, that interact with the tonoplast-localized Mn and iron (Fe) transporter MTP8 in vitro and in vivo. The cpk4/5/6/11 quadruple mutant displayed a dramatic high-Mn-sensitive phenotype similar to that of the mtp8 mutant. CPKs phosphorylated the N-terminal domain of MTP8 primarily at the Ser31 and Ser32 residues. Transport assays combined with multiple physiological experiments on phospho-dead variant MTP8 S31/32A and phospho-mimetic variant MTP8 S31/32D plants under different Mn and Fe conditions suggested that Ser31 and Ser32 are crucial for MTP8 function. In addition, genetic analysis showed that CPKs functioned upstream of MTP8. In summary, we identified a tonoplastassociated calcium signaling cascade that orchestrates Mn homeostasis and links Mn toxicity, Ca 2+ signaling, and Mn transporters. These findings provide new insight into Mn homeostasis mechanisms and Ca 2+ signaling pathways in plants, providing potential targets for engineering heavy metal toxicitytolerant plants.
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca 2+ oscillations in Arabidopsis roots. These Ca 2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca 2+ -dependent protein kinases CPK21 and CPK23 as Ca 2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21 / 23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca 2+ -CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Nitrogen (N) is a limiting nutrient for plant growth and productivity. The phytohormone abscisic acid (ABA) has been suggested to play a vital role in nitrate uptake in fluctuating N environments. However, the molecular mechanisms underlying the involvement of ABA in N deficiency responses are largely unknown. In this study, we demonstrated that ABA signaling components, particularly the three subclass III SUCROSE NON‐FERMENTING1 (SNF1)‐RELATED PROTEIN KINASE 2S (SnRK2) proteins, function in root foraging and uptake of nitrate under N deficiency in Arabidopsis thaliana. The snrk2.2snrk2.3snrk2.6 triple mutant grew a longer primary root and had a higher rate of nitrate influx and accumulation compared with wild‐type plants under nitrate deficiency. Strikingly, SnRK2.2/2.3/2.6 proteins interacted with and phosphorylated the nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) in vitro and in vivo. The phosphorylation of NRT1.1 by SnRK2s resulted in a significant decrease of nitrate uptake and impairment of root growth. Moreover, we identified NRT1.1Ser585 as a previously unknown functional site: the phosphomimetic NRT1.1S585D was impaired in both low‐ and high‐affinity transport activities. Taken together, our findings provide new insight into how plants fine‐tune growth via ABA signaling under N deficiency.
Summary Manganese (Mn) is an essential micronutrient in plants. However, excessive Mn absorption in acidic soils can cause Mn toxicity, which adversely affects plant growth and crop yields. At present, acidic soils cover c. 30% of the Earth's surface. However, the mechanism underpinning Mn uptake remains largely unknown. We identified cbl1/9 and cipk23 mutants exhibiting high‐Mn‐sensitive phenotype through the reverse genetics method. Furthermore, we identified the CIPK23 phosphorylated NRAMP1 through a variety of protein interaction techniques and protein kinase assays. Here, we demonstrated that two calcineurin B‐like proteins, CBL1/9, and their interacting kinase CIPK23 positively regulated the tolerance of Mn toxicity in Arabidopsis. The cbl1 cbl9 double mutant and cipk23 mutants exhibited high‐Mn‐sensitive phenotypes, which manifested as decreased primary root length, biomass, and chlorophyll concentration, and higher accumulation of Mn. In addition, CIPK23 interacted with and phosphorylated the Mn transporter NRAMP1 primarily at Ser20/22 in vitro and in vivo, and thereby induced clathrin‐mediated endocytosis of NRAMP1 to reduce its distribution on the plasma membrane and enhance plant tolerance to Mn toxicity. In summary, we found that the CBL1/9–CIPK23–NRAMP1 module regulates the tolerance to high‐Mn toxicity and provide insight into a mechanism of the tolerance of plants to Mn toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.