AbstractBioethanol is currently the only alternative to gasoline that can be used immediately without having to make any significant changes in the way fuel is distributed. In addition, the carbon dioxide (CO2) released during the combustion of bioethanol is the same as that used by the plant in the atmosphere for its growth, so it does not participate in the increase of the greenhouse effect. Bioethanol can be obtained by fermentation of plants containing sucrose (beet, sugar cane…) or starch (wheat, corn…). However, large-scale use of bioethanol implies the use of very large agricultural surfaces for maize or sugarcane production. Lignocellulosic biomass (LCB) such as agricultural residues for the production of bioethanol seems to be a solution to this problem due to its high availability and low cost even if its growth still faces technological difficulties. In this review, we present an overview of lignocellulosic biomass, the different methods of pre-treatment of LCB and the various fermentation processes that can be used to produce bioethanol from LCB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.