With the rapidly increasing application of microwave technologies, the anxiety and speculation about microwave induced potential health hazards has been attracting more and more attention. In our daily life, people are exposed to complex environments with multi-frequency microwaves, especially L band and C band microwaves, which are commonly used in communications. In this study, we exposed rats to 1.5 GHz (L10), 4.3 GHz (C10) or multi-frequency (LC10) microwaves at an average power density of 10 mW/cm2. Both single and multi-frequency microwaves induced slight pathological changes in the thymus and spleen. Additionally, the white blood cells (WBCs) and lymphocytes in peripheral blood were decreased at 6 h and 7 d after exposure, suggesting immune suppressive responses were induced. Among lymphocytes, the B lymphocytes were increased while the T lymphocytes were decreased at 7 d after exposure in the C10 and LC10 groups, but not in the L10 group. Moreover, multi-frequency microwaves regulated the B and T lymphocytes more strongly than the C band microwave. The results of transcriptomics and proteomics showed that both single and multi-frequency microwaves regulated numerous genes associated with immune regulation and cellular metabolism in peripheral blood and in the spleen. However, multi-frequency microwaves altered the expression of many more genes and proteins. Moreover, multi-frequency microwaves down-regulated T lymphocytes’ development, differentiation and activation-associated genes, while they up-regulated B lymphocytes’ activation-related genes. In conclusion, multi-frequency microwaves of 1.5 GHz and 4.3 GHz produced immune suppressive responses via regulating immune regulation and cellular metabolism-associated genes. Our findings provide meaningful information for exploring potential mechanisms underlying multi-frequency induced immune suppression.
It is well-known that microwaves produce both thermal and nonthermal effects. Microwave ablation can produce thermal effects to activate the body’s immune system and has been widely used in cancer therapy. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In the present study, we exposed rats to multifrequency microwaves of 2.8 GHz and 9.3 GHz with an average power density of 10 mW/cm2, which are widely used in our daily life, to investigate the biological effects on the immune system and its potential mechanisms. Both single-frequency microwaves and multifrequency microwaves caused obvious pathological alterations in the thymus and spleen at seven days after exposure, while multifrequency microwaves produced more pronounced injuries. Unexpectedly, multifrequency microwave exposure increased the number of both leukocytes and lymphocytes in the peripheral blood and upregulated the proportion of B lymphocytes among the total lymphocytes, indicating activation of the immune response. Our data also showed that the cytokines associated with the proliferation and activation of B lymphocytes, including interleukin (IL)-1α, IL-1β and IL-4, were elevated at six hours after exposure, which might contribute to the increase in B lymphocytes at seven days after exposure. Moreover, multifrequency microwave exposure upregulated the mRNA and protein expression of B cell activation-associated genes in peripheral blood. In addition to immune-associated genes, multifrequency microwaves mainly affected the expression of genes related to DNA duplication, cellular metabolism and signal transduction in the peripheral blood and spleen. In conclusion, multifrequency microwaves with 2.8 GHz and 9.3 GHz caused reversible injuries of the thymus and spleen but activated immune cells in the peripheral blood by upregulating mRNA and protein expression, as well as cytokine release. These results not only uncovered the biological effects of multifrequency microwave on the immune system, but also provide critical clues to explore the potential mechanisms.
Microwave ablation can produce immune activation due to thermal effects. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In this study, we sequentially exposed rats to 1.5 GHz microwave for 6 min and 2.8 GHz microwave for 6 min at an average power density of 5, 10, and 30 mW/cm2. The structure of the thymus, spleen, and mesenteric lymph node were observed, and we showed that multifrequency microwave exposure caused tissue injuries, such as congestion and nuclear fragmentation in lymphocytes. Ultrastructural injuries, including mitochondrial swelling, mitochondrial cristae rupture, and mitochondrial cavitation, were observed, especially in the 30 mW/cm2 microwave-exposed group. Generally, multifrequency microwaves decreased white blood cells, as well as lymphocytes, monocytes, and neutrophils, in peripheral blood, from 7 d to 28 d after exposure. Microwaves with an average density of 30 mW/cm2 produced much more significant inhibitory effects on immune cells. Moreover, multifrequency microwaves at 10 and 30 mW/cm2, but not 5 mW/cm2, reduced the serum levels of several cytokines, such as interleukin-1 alpha (IL-1α), IL-1β, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), at 7 d and 14 d after exposure. We also found similar alterations in immunoglobulins (Igs), IgG, and IgM in serum. However, no obvious changes in complement proteins were detected. In conclusion, multifrequency microwave exposure of 1.5 GHz and 2.8 GHz caused both structural injuries of immune tissues and functional impairment in immune cells. Therefore, it will be necessary to develop an effective strategy to protect people from multifrequency microwave-induced immune suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.