Condition-based maintenance (CBM) is receiving increasing attention in various engineering systems because of its effectiveness. This paper formulates a new CBM optimization problem for continuously monitored degrading systems considering imperfect maintenance actions. In terms of maintenance actions, in practice, they scarcely restore the system to an as-good-as new state due to residual damage. According to up-to-data researches, imperfect maintenance actions are likely to speed up the degradation process. Regarding the developed CBM optimization strategy, it can balance the maintenance cost and the availability by the searching the optimal preventive maintenance threshold. The maximum number of maintenance is also considered, which is regarded as an availability constraint in the CBM optimization problem. A numerical example is introduced, and experimental results can demonstrate the novelty, feasibility and flexibility of the proposed CBM optimization strategy.
Maintenance is fundamental to ensure the safety, reliability and availability of
engineering systems, and predictive maintenance is the leading one in maintenance technology. This paper aims to develop a novel data-driven predictive maintenance strategy that can make appropriate maintenance decisions for repairable complex engineering systems. The proposed strategy includes degradation feature selection and degradation prognostic modeling modules to achieve accurate failure prognostics. For maintenance decision-making, the perfect time for taking maintenance activities is determined by evaluating the maintenance cost online that has taken into account of the failure prognostic results of performance degradation. The feasibility and effectiveness of the proposed strategy is confirmed using the NASA data set of aero-engines. Results show that the proposed strategy outperforms the two benchmark maintenance strategies: classical periodic maintenance and emerging dynamic predictive maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.