Breast cancer frequently metastasizes to bone, causing osteolytic lesions. However, how factors secreted by primary tumors affect the bone microenvironment before the osteolytic phase of metastatic tumor growth remains unclear. Understanding these changes is critical as they may regulate metastatic dissemination and progression. To mimic premetastatic bone adaptation, immunocompromised mice were injected with MDA-MB-231–conditioned medium [tumor-conditioned media (TCM)]. Subsequently, the bones of these mice were subjected to multiscale, correlative analysis including RNA sequencing, histology, micro–computed tomography, x-ray scattering analysis, and Raman imaging. In contrast to overt metastasis causing osteolysis, TCM treatment induced new bone formation that was characterized by increased mineral apposition rate relative to control bones, altered bone quality with less matrix and more carbonate substitution, and the deposition of disoriented mineral near the growth plate. Our study suggests that breast cancer–secreted factors may promote perturbed bone growth before metastasis, which could affect initial seeding of tumor cells.
The coating technique, supposedly invented by Chinese papermakers no later than the 3rd century AD, greatly improved paper sheets' qualities of color, texture, writability, and printability. Alongside the dispersal of papermaking and surface-treatment techniques beyond China, coated papers were manufactured and used in many other regions of the world. Understanding the manufacture of coated papers, therefore, is crucial for perceiving how surface treatments were developed to meet the need for paper with enhanced properties. However, the characterization of coating and coating pigments on ancient Chinese papers has long remained an unsolved issue, and previous studies on this topic have often produced inconclusive results. To explore a non-invasive methodology that can more reliably characterize coated papers and the coating pigment on them, this article presents the results of a pilot study that applied micro-computed tomography (micro-CT) and Raman spectroscopy to samples of three Qing Dynasty (1644-1911 AD) papers and two handmade papers manufactured in China in the 1990s. Micro-CT revealed the coating layer(s) on Lajian (waxed coated paper) and Lengjinjian (gold-dusted paper) of the Qing Dynasty and characterized the modern raw xuan and bamboo papers as uncoated. Raman spectroscopy, together with handheld X-ray fluorescence analysis, identified the mineral-based pigment in the coating layer, suggesting the use of lead white or kaolin as the coating pigment. Additionally, Raman analysis confirmed the use of other mineral pigments (red lead and cinnabar), beeswax, and organic dyes (gamboge, kermesic acid, and possibly purpurin) in the manufacture of Lajian and Lengjinjian papers. The combination of micro-CT and Raman spectroscopy, it is therefore suggested, is a practical, more reliable approach for non-invasive investigation of coating and coating pigments on ancient Chinese paper specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.