In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and characterize when this bound is achieved. Furthermore, this result deduces the main result in [X. Duan and B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl. 439:2961-2970, 2013] for nonnegative matrices; improves the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph for some known results in [D.M. Chen, Z.B. Chen and X.D. Zhang, Spectral radius of uniform hypergraphs and degree sequences, Front. Math. China 6:1279-1288, 2017]; and presents some new sharp upper bounds for the adjacency spectral radius and signless Laplacian spectral radius of a uniform directed hypergraph. Moreover, a characterization of a strongly connected k-uniform directed hypergraph is obtained.
MSC: 05C65; 15A69
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.