Objective. Over the past years, Convolutional Neural Networks (CNNs) based methods have dominated the field of medical image segmentation. But the main drawback of these methods is that they have difficulty representing long-range dependencies. Recently, the Transformer has demonstrated super performance in computer vision and has also been successfully applied to medical image segmentation because of the self-attention mechanism and long-range dependencies encoding on images. To the best of our knowledge, only a few works focus on cross-modalities of image segmentation using the Transformer. Hence, the main objective of this study was to design, propose and validate a deep learning method to extend the application of Transformer to multi-modality medical image segmentation. Approach. This paper proposes a novel automated multi-modal transformer network termed AMTNet for 3D medical image segmentation. Especially, the network is a well-modeled U-shaped network architecture where many effective and significant changes have been made in the feature encoding, fusion, and decoding parts. The encoding part comprises 3D embedding, 3D multi-modal Transformer, and 3D Co-learn down-sampling blocks. Symmetrically, the 3D Transformer block, upsampling block, and 3D-expanding blocks are included in the decoding part. In addition, a Transformer-based adaptive channel interleaved Transformer feature fusion (AITF) module is designed to fully fuse features of different modalities. Main results. We provide a comprehensive experimental analysis of the Prostate and BraTS2021 datasets. The results show that our method achieves an average DSC of 0.907 and 0.851 (0.734 for ET, 0.895 for TC, and 0.924 for WT) on these two datasets, respectively. These values show that AMTNet yielded significant improvements over the state-of-the-art segmentation networks. Significance. The proposed 3D segmentation network exploits complementary features of different modalities during the feature extraction process at multiple scales to increase the 3D feature representations and improve the segmentation efficiency. This powerful network enriches the research of the Transformer to multi-modal medical image segmentation.
Accurate tumor segmentation in medical images plays an important role in clinical diagnosis and disease analysis. However, medical images usually have great complexity, such as low contrast of computed tomography (CT) or low spatial resolution of positron emission tomography (PET). In the actual radiotherapy plan, multimodal imaging technology, such as PET/CT, is often used. PET images provide basic metabolic information and CT images provide anatomical details. In this paper, we propose a 3D PET/CT tumor co-segmentation framework based on active contour model. First, a new edge stop function (ESF) based on PET image and CT image is defined, which combines the grayscale standard deviation information of the image and is more effective for blurry medical image edges. Second, we propose a background subtraction model to solve the problem of uneven grayscale level in medical images. Apart from that, the calculation format adopts the level set algorithm based on the additive operator splitting (AOS) format. The solution is unconditionally stable and eliminates the dependence on time step size. Experimental results on a dataset of 50 pairs of PET/CT images of non-small cell lung cancer patients show that the proposed method has a good performance for tumor segmentation.
This paper proposes a hybrid active contour model for tumor co-segmentation from PET/CT images. We incorporate the foreground of the CT image and the background of the PET image into a co-segmentation framework to establish a new energy functional. Different from existing methods, the proposed model incorporates an edge stopping function based on PET images. The proposed method has been evaluated on a data set of 50 pairs of PET/CT images of non-small cell lung cancer patients and compared with other single-mode segmentation methods and co-segmentation methods. Experimental results show that our model is more robust than other strategies in complex backgrounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.