q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra [Formula: see text], where [Formula: see text] and [Formula: see text], is a vector space A over a field đ˝ with 3-ary linear multiplications [ , , ]q and [Formula: see text] from [Formula: see text] to A, and a map [Formula: see text] satisfying the q-Jacobi identity [Formula: see text] for all [Formula: see text]. If the multiplications satisfy that [Formula: see text] and [Formula: see text] is skew-symmetry, then [Formula: see text] is called a type (I)-q-3- Lie algebra. From q-Lie algebras, group algebras and commutative associative algebras, q-3-Lie algebras and type (I)-q-3-Lie algebras are constructed. Also, the non-trivial onedimensional central extension of q-3-Lie algebras is investigated, and new q-3-Lie algebras [Formula: see text], and [Formula: see text] are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsâcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.