The video super-resolution (VSR) task aims to restore a high-resolution video frame by using its corresponding low-resolution frame and multiple neighboring frames. At present, many deep learning-based VSR methods rely on optical flow to perform frame alignment. The final recovery results will be greatly affected by the accuracy of optical flow. However, optical flow estimation cannot be completely accurate, and there are always some errors. In this paper, we propose a novel deformable non-local network (DNLN) which is non-flow-based. Specifically, we apply the improved deformable convolution in our alignment module to achieve adaptive frame alignment at the feature level. Furthermore, we utilize a non-local module to capture the global correlation between the reference frame and aligned neighboring frame, and simultaneously enhance desired fine details in the aligned frame. To reconstruct the final high-quality HR video frames, we use residual in residual dense blocks to take full advantage of the hierarchical features. Experimental results on several datasets demonstrate that the proposed DNLN can achieve state of the art performance on video super-resolution task.
Single image super-resolution is known to be an ill-posed problem, which has been studied for decades. With the developments of deep convolutional neural networks, the CNN-based single image super-resolution methods have greatly improved the quality of the generated high-resolution images. However, it is difficult for image super-resolution to make full use of the relationship between pixels in low-resolution images. To address this issue, we propose a novel multi-scale residual hierarchical dense network, which tries to find the dependencies in multi-level and multi-scale features. Especially, we apply the atrous spatial pyramid pooling, which concatenates multiple atrous convolutions with different dilation rates, and design a residual hierarchical dense structure for single image super-resolution. The atrous-spatialpyramid-pooling module is used for learning the relationship of features at multiple scales while the residual hierarchical dense structure, which consists of several hierarchical dense blocks with skip connections, aims to adaptively detect key information from multi-level features. Meanwhile, dense features from different groups are connected in a dense approach by hierarchical dense blocks, which can adequately extract local multi-level features. The extensive experiments on benchmark datasets illustrate the superiority of our proposed method compared with the state-of-the-art methods. The super-resolution results on benchmark datasets of our method can be downloaded from https://github.com/Rainyfish/MS-RHDN, and the source code will be released upon acceptance of the paper.INDEX TERMS Convolutional neural networks, deep learning, multi-scale residual hierarchical dense, image super-resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.