Dense mapping is an important part of mobile robot navigation and environmental understanding. Aiming to address the problem that Dense Surfel Mapping relies on the input of a common-view relationship, we propose a local map extraction strategy based on spatiotemporal consistency. The local map is extracted through the inter-frame pose observability and temporal continuity. To reduce the blurring of map fusion caused by the different viewing angles, a normal constraint is added to the map fusion and weight initialization. To achieve continuous and stable time efficiency, we dynamically adjust the parameters of superpixel extraction. The experimental results on the ICL-NUIM and KITTI datasets show that the partial reconstruction accuracy is improved by approximately 27–43%. In addition, the system achieves a greater than 15 Hz real-time performance using only CPU computation, which is improved by approximately 13%.
In scenes where there are lighting changes, localization may fail for visual SLAM due to feature point tracking failure. Thus, a feature point tracking method based on multi-condition constraints is proposed for visual SLAM. The proposed method tracks the feature points of optical flow from aspects such as the overall motion position of feature points, descriptor grayscale information, and spatial geometric constraints. First, to solve the problem of feature point mismatch in complex environments, we propose a feature point mismatch removal method that combines optical flow, descriptor, and RANSAC. We eliminate incorrect feature point matches layer by layer through these constraints. The uniformity of feature point distribution in the image can then affect the accuracy of camera pose estimation, and different scenes can also affect the difficulty of feature point extraction. In order to balance the quality and uniformity of the extracted feature points, we propose an adaptive mask homogenization method that adaptively adjusts the mask radius according to the quality of feature points. Experiments conducted on the EuRoC dataset show that the proposed method which integrates the improved feature point mismatch removal method and mask homogenization method into feature point tracking, exhibits robustness and accuracy under various interferences such as lighting changes, image blurring, and unclear textures. Compared to the RANSAC method, we reduce the location error by about 85% using the EuRoC dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.