Autoimmunity is involved in the valvular damage caused by rheumatic heart disease (RHd). Increased evidence has linked microRNAs (miRNAs/miRs) to autoimmune disease. Signal transducer and activator of transcription 3 (STAT3) and sphingosine-1-phosphate receptor 1 (S1PR1) and suppressor of cytokine signaling 1 (SOcS1) have been widely studied for their roles in autoimmunity and inflammation. Thus, the current study aims to investigate the role played by miR-155-5p in RHd-induced valvular damage via the S1PR1, SOcS1/STAT3 and interleukin (IL)-6/STAT3 signaling pathways. An RHd rat model was induced by inactivated Group A streptococci and complete Freund's adjuvant. A recombinant adeno-associated virus (AAV-miR155-inhibitor) was used to inhibit the expression of miR-155-5p in the heart. Inflammation and fibrosis were assessed by hematoxylin and eosin staining and Sirius red staining. The expression of miR-155-5p in valvular tissues and serum exosomes was detected by reverse transcription-quantitative PcR. S1PR1, SOcS1, STAT3, phosphorylated STAT3, IL-6 and IL-17 protein expression was detected by western blotting and immunohistochemistry. The relationships between miR-155-5p and S1PR1 and SOcS1 were detected by dual luciferase assays. cytokine concentrations were measured by ELISA. The expression of miR-155-5p in valve tissues and serum exosomes was increased along with decreased S1PR1 and activated SOcS1/STAT3 signaling in the RHd model. The expression of IL-6 and IL-17 was increased in the valves and the serum. dual luciferase assays showed that miR-155-5p directly targeted S1PR1 and SOcS1. Inhibition of valvular miR-155-5p through AAV pretreatment increased S1PR1 expression and inhibited activation of the SOcS1/STAT3 signal pathway as a result of attenuated valvular inflammation and fibrosis as well as a decrease in IL-6 and IL-17 in the valves and serum. These results suggest that inhibition of miR-155-5p can reduce RHd-induced valvular damage via the S1PR1, SOcS1/STAT3 and IL-6/STAT3 signaling pathways.
Exosomes are nanosized bilayer membrane vesicles that may mediate intercellular communication by transporting bioactive molecules, including noncoding RNAs, mRNAs, and proteins. Research has shown that exosomes play an important role in acute myocardial infarction (AMI), but the function and regulation of exosomal long noncoding RNAs (lncRNAs) in AMI are unclear. Thus, RNA sequencing (RNA-Seq) was conducted to investigate the exosomal lncRNA transcriptome from MI patients and identified 65 differentially expressed lncRNAs between the MI and control groups. HCG15, one of the differentially expressed lncRNAs, was verified to have the highest correlation with cTnT by qRT-PCR, and it also contributed to the diagnosis of AMI by receiver operating characteristic (ROC) analysis. Upregulation of HCG15 expression facilitated cardiomyocyte apoptosis and inflammatory cytokine production and inhibited cell proliferation. We also confirmed that HCG15 was mainly wrapped in exosomes from AC16 cardiomyocytes under hypoxia, which contributed to cardiomyocyte apoptosis, the release of inflammatory factors, and inhibition of cell proliferation via the activation of the NF-κB/p65 and p38 pathways, whereas suppressing the expression of HCG15exerted opposite effects, In addition, Overexpression of HCG15 aggravated cardiac IR injury in C57BL/6J mice. This study not only helps elucidate exosomal lncRNA function in AMI pathogenesis but also contributes to the development of novel therapeutic strategies.
Oridonin (ORI), the major pharmacological component extracted from a traditional Chinese medicine, possesses a beneficial effect on myocardial ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanism by which ORI effects take place is not completely known. Thus, whether ORI works via downregulating oxidative stress and nod-like receptor protein-3 (NLRP3) inflammasome pathway was investigated in this study. Mice underwent surgery to induce myocardial I/R injury, and some were administered ORI (10 mg/kg/day) pretreatment, while others were not. The myocardial enzymes’ levels, infarct area, and inflammatory injury were measured. The activation situation of oxidative stress and NLRP3 inflammasome was also detected. We found that ORI pretreatment significantly alleviated CK-MB and cTnI levels and infarct size induced by I/R. ORI mitigated the inflammatory injury by decreasing the pathological damage and lowering TNF-α, IL-1β, and IL-18 levels. Moreover, the SOD1 and eNOS levels were significantly increased by ORI, while MDA and iNOS levels were relatively decreased. The oxidative stress was reversed using ORI pretreatment. Importantly, NLRP3 inflammasome pathway was also inhibited by ORI, as reflected by the lower protein levels of NLRP3, caspase-1, and IL-1β. In conclusion, ORI alleviates myocardial injury induced by I/R via inhibiting the oxidative stress and NLRP3 inflammasome pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.