BackgroundMaize (Zea mays) husk referring to the leafy outer enclosing the ear, plays an important role in grain production by directly contributing photosynthate and protecting ear from pathogen infection. Although the physiological functions related to husk have been extensively studied, little is known about its morphological variation and genetic basis in natural population.ResultsHere we utilized a maize association panel including 508 inbred lines with tropical, subtropical and temperate backgrounds to decipher the genetic architecture attributed to four husk traits, i.e. number of layers, length, width and thickness. Evaluating the phenotypic diversity at two different environments showed that four traits exhibit broadly natural variations and moderate levels of heritability with 0.64, 0.74, 0.49 and 0.75 for number, length, width and thickness, respectively. Diversity analysis indicated that different traits have dissimilar responses to subpopulation effects. A series of significantly positive or negative correlations between husk phenotypes and other agronomic traits were identified, indicating that husk growth is coordinated with other developmental processes. Combining husk traits with about half of a million of single nucleotide polymorphisms (SNPs) via genome-wide association study revealed a total of 9 variants significantly associated with traits at P < 1.04 × 10-5, which are implicated in multiple functional categories, such as cellular trafficking, transcriptional regulation and metabolism.ConclusionsThese results provide instrumental information for understanding the genetic basis of husk development, and further studies on identified candidate genes facilitate to illuminate molecular pathways regulating maize husk growth.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3229-6) contains supplementary material, which is available to authorized users.
SARS-CoV-2 has made >190-million infections worldwide, thus it is pivotal to understand the viral impacts on host cells. Many viruses can significantly alter host chromatin, but such roles of SARS-CoV-2 are largely unknown. Here, we characterized the three-dimensional (3D) genome architecture and epigenome landscapes in human cells after SARS-CoV-2 infection, revealing remarkable restructuring of host chromatin architecture. High-resolution Hi-C 3.0 uncovered widespread A compartmental weakening and A-B mixing, together with a global reduction of intra-TAD chromatin contacts. The cohesin complex, a central organizer of the 3D genome, was significantly depleted from intra-TAD regions, supporting that SARS-CoV-2 disrupts cohesin loop extrusion. Calibrated ChIP-Seq verified chromatin restructuring by SARS-CoV-2 that is particularly manifested by a pervasive reduction of euchromatin modifications. Built on the rewired 3D genome/epigenome maps, a modified activity-by-contact model highlights the transcriptional weakening of antiviral interferon response genes or virus sensors (e.g., DDX58) incurred by SARS-CoV-2. In contrast, pro-inflammatory genes (e.g. IL-6) high in severe infections were uniquely regulated by augmented H3K4me3 at their promoters. These findings illustrate how SARS-CoV-2 rewires host chromatin architecture to confer immunological gene deregulation, laying a foundation to characterize the long-term epigenomic impacts of this virus.
Human NANOG expression resets stem cells to ground-state pluripotency. Here we identify the unique features of human NANOG that relate to its dose-sensitive function as a master transcription factor. NANOG is largely disordered, with a C-terminal prion-like domain that phase-transitions to gel-like condensates. Full-length NANOG readily forms higher-order oligomers at low nanomolar concentrations, orders of magnitude lower than typical amyloids. Using single-molecule Förster resonance energy transfer and fluorescence cross-correlation techniques, we show that NANOG oligomerization is essential for bridging DNA elements in vitro. Using chromatin immunoprecipitation sequencing and Hi-C 3.0 in cells, we validate that NANOG prion-like domain assembly is essential for specific DNA recognition and distant chromatin interactions. Our results provide a physical basis for the indispensable role of NANOG in shaping the pluripotent genome. NANOG’s unique ability to form prion-like assemblies could provide a cooperative and concerted DNA bridging mechanism that is essential for chromatin reorganization and dose-sensitive activation of ground-state pluripotency.
Root hair, a special type of tubular-shaped cell, outgrows from the root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stresses. Studies in the model plant Arabidopsis have revealed that root-hair initiation and elongation are hierarchically regulated by a group of basic helixÀloopÀhelix (bHLH) transcription factors (TFs). However, knowledge regarding the regulatory pathways of these bHLH TFs in controlling root hair growth remains limited. In this study, RNA-seq analysis was conducted to profile the transcriptome in the elongating maize root hair and >1000 genes with preferential expression in root hair were identified. A consensus cis-element previously featured as the potential bHLH-TF binding sites was present in the regulatory regions for the majority of the root hairpreferentially expressed genes. In addition, an individual change in ZmLRL5, the highest-expressed bHLH-TF in maize root hair resulted in a dramatic reduction in the elongation of root hair, and rendered the growth of root hair hypersensitive to translational inhibition. Moreover, RNA-seq, yeast-one-hybrid and ribosome profile analysis suggested that ZmLRL5 may function as a key player in orchestrating the translational process by directly regulating the expression of translational processes/ribosomal genes during maize root hair growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.