A steady-state calorimetric technique was developed for measuring the total hemispherical emissivity of a conductive material. The system uses a thin strip of the conductive sample electrically heated by alternating current to high temperatures in a vacuum chamber. The emissivity was measured in a central region of the sample with an approximately uniform temperature distribution. Considering the influences of the gray body assumption, wire heat losses, effects of residual gas and conductive heat loss from the region to the rest of the strip, the emissivity was accurately determined by solving the inverse one-dimension steady-state heat transfer problem. The emissivities of various metal samples (nickel and 45# steel) were measured to verify the system accuracy. And the results were then analyzed to estimate the relative errors of emissivity arising from the gray body assumption, wire heat losses, effects of residual gas, non-uniform temperature distribution and the measurement uncertainty of emissivity. In the temperature range from 700 to 1300 K, the accuracy is acceptable for practical applications within the total measurement uncertainties of 1.1%. To increase the system applicability, some issues related to sample specifications, heating power control and temperature uniformity of sample test section were discussed. Thus, this system can provide accurate measurements of the total hemispherical emissivity of conductive samples at high temperatures.
A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, Δλ(CCD) = 30 nm and Δλ(InGaAs) = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.