Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. Electronic supplementary material The online version of this article (10.1186/s12943-019-1053-8) contains supplementary material, which is available to authorized users.
Background: N6-methyladenosine (m 6 A) modification is an emerging layer of epigenetic regulation which is widely implicated in the tumorigenicity of hepatocellular carcinoma (HCC), offering a novel perspective for investigating molecular pathogenesis of this disease. The role of AlkB homolog 5 (ALKBH5), one of the m 6 A demethylases, has not been fully explored in HCC. Here we clarify the biological profile and potential mechanisms of ALKBH5 in HCC. Methods: Expression of ALKBH5 and its correlation with clinicopathological characteristics of HCC were evaluated using tissue microarrays and online datasets. And biological effects of ALKBH5 in HCC were determined in vitro and in vivo. Subsequently, methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA sequencing (RNA-seq), and following m 6 A dot blot, MeRIP-qPCR, RIP-qPCR or dual luciferase reporter assays were employed to screen and validate the candidate targets of ALKBH5. Results: We demonstrated that ALKBH5 was down-regulated in HCC, and decreased ALKBH5 expression was an independent prognostic factor of worse survival in HCC patients. Functionally, ALKBH5 suppressed the proliferation and invasion capabilities of HCC cells in vitro and in vivo. Mechanistically, ALKBH5-mediated m 6 A demethylation led to a post-transcriptional inhibition of LY6/PLAUR Domain Containing 1 (LYPD1), which could be recognized and stabilized by the m 6 A effector IGF2BP1. In addition, we identified that LYPD1 induced oncogenic behaviors of tumors in contrast to ALKBH5. Dysregulation of ALKBH5/LYPD1 axis impelled the progression of HCC. Conclusion: Our study reveals that ALKBH5, characterized as a tumor suppressor, attenuates the expression of LYPD1 via an m 6 A-dependent manner in HCC cells. Our findings enrich the landscape of m 6 A-modulated tumor malignancy, and provide new insights into potential biomarkers and therapeutic targets of HCC treatment.
PVT1, which maps to chromosome 8q24, is a copy number amplification-associated long non-coding RNA. Overexpression of PVT1 is a powerful predictor of tumor progression and patient survival in a diverse range of cancer types. However, the association between PVT1 and hepatocellular carcinoma (HCC) remains unclear. The aim of the present study was to examine the expression pattern of PVT1, and its clinical significance in HCC. Between 2003 and 2012, reverse transcription-quantitative polymerase chain reaction was used to determine the expression levels of PVT1 in two independent cohorts: Cohort one, 58 HCC resection samples; and cohort 2, 214 HCC transplant samples. Additionally, the correlation between PVT1 expression levels and clinical parameters and outcomes was analyzed. The relative expression levels of PVT1 were significantly higher in cancerous tissues compared with the corresponding non-cancerous tissues (cohort one, P=0.0016; cohort two, P=0.0274). Furthermore, overexpression of PVT1 was associated with a higher serum α-fetoprotein expression level (P=0.011) and a higher recurrence rate (P=0.004). Kaplan-Meier analysis indicated that the patients with high PVT1 expression exhibited poor recurrence-free survival (P=0.021), and multivariate analysis demonstrated that high levels of PVT1 expression are an independent predictor for HCC recurrence (P=0.042; hazard ratio, 1.653). Thus, the high expression levels of PVT1 in HCC may serve as a novel biomarker for predicting tumor recurrence in HCC patients, and as a potential therapeutic target.
Long non-coding RNA HOTAIR exerts regulatory functions in various biological processes in cancer cells, such as proliferation, apoptosis, mobility, and invasion. We previously found that HOX transcript antisense RNA (HOTAIR) is a negative prognostic factor and exhibits oncogenic activity in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the role and molecular mechanism of HOTAIR in promoting HCC cell migration and invasion. Firstly, we profiled its gene expression pattern by microarray analysis of HOTAIR loss in Bel-7402 HCC cell line. The results showed that 129 genes were significantly down-regulated, while 167 genes were significantly up-regulated (fold change >2, p < 0.05). Bioinformatics analysis indicated that RNA binding proteins were involved in this biological process. HOTAIR suppression using RNAi strategy with HepG2 and Bel-7402 cells increased the mRNA and protein expression levels of RNA binding motif protein 38 (RBM38). Moreover, the expression levels of RBM38 in HCC specimens were significantly lower than paired adjacent noncancerous tissues. In addition, knockdown of HOTAIR resulted in a decrease of cell migration and invasion, which could be specifically rescued by down-regulation of RBM38. Taken together, HOTAIR could promote migration and invasion of HCC cells by inhibiting RBM38, which indicated critical roles of HOTAIR and RBM38 in HCC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.