As fixed-wing unmanned aerial vehicles (FW-UAVs) are used for diverse civil and scientific missions, failure incidents are on the rise. Recent rapid developments in deep learning (DL) techniques offer advanced solutions for fault diagnosis of UAVs. However, most existing DL-based diagnostic models only perform well when trained on massive amounts of labeled data, which are challenging to collect due to the complexity of the FW-UAVs systems and service environments. To address these issues, this paper presents a novel framework, Siamese Hybrid Neural Network (SHNN), to achieve few-shot fault diagnosis of FW-UAVs in an intelligent manner. “State map” strategy is firstly proposed to transform raw flight data into similar and dissimilar sample pairs as input. The proposed SHNN framework consists of two identical networks that share weights with each other, and each subnetwork is designed with a hybrid one dimensional conventional neural network and long short-term memory (1D CNN-LSTM) model as feature encoder, whose generated feature embedding is used to measure the similarity of input pairs via a distance function in the metric space. In comprehensive experiments on a real flight dataset of an FW-UAV, the SHNN framework achieves competitive results compared to other models, demonstrating its effectiveness in both binary and multi-class few-shot fault diagnosis.
Intelligent fault diagnosis methods based on deep learning have achieved much progress in recent years. However, there are two major factors causing serious degradation of the performance of these algorithms in real industrial applications, i.e., limited labeled training data and complex working conditions. To solve these problems, this study proposed a domain generalization-based hybrid matching network utilizing a matching network to diagnose the faults using features encoded by an autoencoder. The main idea was to regularize the feature extractor of the network with an autoencoder in order to reduce the risk of overfitting with limited training samples. In addition, a training strategy using dropout with random changing rates on inputs was implemented to enhance the model’s generalization on unseen domains. The proposed method was validated on two different datasets containing artificial and real faults. The results showed that considerable performance was achieved by the proposed method under cross-domain tasks with limited training samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.