We present a new theoretical and numerical framework for modelling mechanicallyassisted corrosion in elastic-plastic solids. Both pitting and stress corrosion cracking (SCC) can be captured, as well as the pit-to-crack transition. Localised corrosion is assumed to be dissolution-driven and a formulation grounded upon the film rupture-dissolution-repassivation mechanism is presented to incorporate the influence of film passivation. The model incorporates, for the first time, the role of mechanical straining as the electrochemical driving force, accelerating corrosion kinetics. The computational complexities associated with tracking the evolving metal-electrolyte interface are resolved by making use of a phase field paradigm, enabling an accurate approximation of complex SCC morphologies. The coupled electro-chemomechanical formulation is numerically implemented using the finite element method and an implicit time integration scheme; displacements, phase field order parameter and concentration are the primary variables. Five case stud-* Corresponding author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.