Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.
Coronavirus disease 2019 (COVID-19) has spread worldwide. To date, no specific drug for COVID-19 has been developed. Thus, this randomized, open-label, controlled clinical trial (ChiCTR2000029853) was performed in China. A total of 20 mild and common COVID-19 patients were enrolled and randomly assigned to receive azvudine and symptomatic treatment (FNC group), or standard antiviral and symptomatic treatment (control group). The mean times of the first nucleic acid negative conversion (NANC) of ten patients in the FNC group and ten patients in the control group are 2.60 (SD 0.97; range 1-4) d and 5.60 (SD 3.06; range 2-13) d, respectively (p = 0.008). The mean times of the first NANC of four newly diagnosed subjects in the FNC group and ten subjects in the control group are 2.50 (SD 1.00; range 2-4) d and 9.80 (SD 4.73; range 3-19) d, respectively (starting from the initial treatment) (p = 0.01). No adverse events occur in the FNC group, while three adverse events occur in the control group (p = 0.06). The preliminary results show that FNC treatment in the mild and common COVID-19 may shorten the NANC time versus standard antiviral treatment. Therefore, clinical trials of FNC treating COVID-19 with larger sample size are warranted.
N-(5-Chloro-2,4-dihydroxyphenyl)-1-phenylcyclobutanecarboxamide (N-CDPCB, 1a) is found to be an inhibitor of the fat mass and obesity associated protein (FTO). The crystal structure of human FTO with 1a reveals a novel binding site for the FTO inhibitor and defines the molecular basis for recognition by FTO of the inhibitor. The identification of the new binding site offers new opportunities for further development of selective and potent inhibitors of FTO, which is expected to provide information concerning novel therapeutic targets for treatment of obesity or obesity-associated diseases.
Fe(II) and α-ketoglutarate-dependent fat mass and obesity associated protein (FTO)-dependent demethylation of m⁶A is important for regulation of mRNA splicing and adipogenesis. Developing FTO-specific inhibitors can help probe the biology of FTO and unravel novel therapeutic targets for treatment of obesity or obesity-associated diseases. In the present paper, we have identified that 4-chloro-6-(6'-chloro-7'-hydroxy-2',4',4'-trimethyl-chroman-2'-yl)benzene-1,3-diol (CHTB) is an inhibitor of FTO. The crystal structure of CHTB complexed with human FTO reveals that the novel small molecule binds to FTO in a specific manner. The identification of the novel small molecule offers opportunities for further development of more selective and potent FTO inhibitors.
The fat mass and obesity-associated protein (FTO), as an mA demethylase, is involved in many human diseases. Virtual screening and similarity search in combination with bioactivity assay lead to the identification of the natural compound radicicol as a potent FTO inhibitor, which exhibits a dose-dependent inhibition of FTO demethylation activity with an IC value of 16.04 μM. Further ITC experiments show that the binding between radicicol and FTO was mainly entropy-driven. Crystal structure analysis reveals that radicicol adopts an L-shaped conformation in the FTO binding site and occupies the same position as N-CDPCB, a previously identified small molecular inhibitor of FTO. Unexpectedly, however, the 1,3-diol group conserved in radicicol and N-CDPCB assumes strikingly different orientations for interaction with FTO. The identification of radicicol as an FTO inhibitor and revelation of its recognition mechanism not only opens the possibility of developing new therapeutic strategies for treatment of leukemia but also provide clues for elucidation of the acting mechanisms of radicicol, which is a possible clinical candidate worth in-depth study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.