The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.
The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes.
BackgroundThe functional repertoire of long noncoding RNA (lncRNA) has been characterized in several model organisms, demonstrating that lncRNA plays important roles in fundamental biological processes. However, they remain largely unidentified in most species. Understanding the characteristics and functions of lncRNA in insects would be useful for insect resources utilization and sustainable pest control.MethodsA computational pipeline was developed to identify lncRNA genes in the rice brown planthopper, Nilaparvata lugens, a destructive rice pest causing huge yield losses. Strand specific RT-PCR were used to determine the transcription orientation of lncRNAs.ResultsIn total, 2,439 lncRNA transcripts corresponding to 1,882 loci were detected from 12 whole transcriptomes (RNA-seq) datasets, including samples from high fecundity (HFP), low fecundity (LFP), I87i and C89i populations, in addition Mudgo and TN1 virulence strains. The identified N. lugens lncRNAs had low sequence similarities with other known lncRNAs. However, their structural features were similar with mammalian counterparts. N. lugens lncRNAs had shorter transcripts than protein-coding genes due to the lower exon number though their exons and introns were longer. Only 19.9% of N. lugens lncRNAs had multiple alternatively spliced isoforms. We observed biases in the genome location of N. lugens lncRNAs. More than 30% of the lncRNAs overlapped with known protein-coding genes. These lncRNAs tend to be co-expressed with their neighboring genes (Pearson correlation, p < 0.01, T-test) and might interact with adjacent protein-coding genes. In total, 19-148 lncRNAs were specifically-expressed in the samples of HFP, LFP, Mudgo, TN1, I87i and C89i populations. Three lncRNAs specifically expressed in HFP and LFP populations overlapped with reproductive-associated genes.DiscussionThe structural features of N. lugens lncRNAs are similar to mammalian counterparts. Coexpression and function analysis suggeste that N. lugens lncRNAs might have important functions in high fecundity and virulence adaptability.ConclusionsThis study provided the first catalog of lncRNA genes in rice brown planthopper. Gene expression and genome location analysis indicated that lncRNAs might play important roles in high fecundity and virulence adaptation in N. lugens.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1953-y) contains supplementary material, which is available to authorized users.
Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.