The safety of the electromagnetic environment of wireless power transfer (WPT) systems is one of the prerequisites for the application of wireless charging technology for electric vehicles (EVs). The electromagnetic characteristics of a wireless charging EV with a new 7.7 kW WPT system were modeled and analyzed in this paper. Firstly, a complete model of the magnetic coupler was built as a source of electromagnetic radiation, and an external excitation source was added by coupling the resonant coils to the double inductor-capacitor-capacitor (LCC-LCC) topology circuit model. Secondly, the finite element analysis software COMSOL Multiphysics was used to solve for the magneto-quasistatic values to verify the electromagnetic safety of the wireless charging process. Then, two charging scenarios were investigated when the GA and VA aligned and misaligned, involving lateral offset and longitudinal offset cases. Finally, the simulation results were compared and analyzed, showing that the values of electromagnetic fields become higher as the offset distance increases. In worst-case scenarios, the highest magnetic flux density (1.1 µT) is observed in the virtual plane of the test on the left side of the vehicle, which occupies only 17.6% of the limits specified in ICNIRP 1998 (6.25 µT), indicating a good EMF safety performance of the wireless charging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.