Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization.
Host restriction factors constitute a formidable barrier for viral replication to which many viruses have evolved counter-measures. Human SAMD9, a tumor suppressor and a restriction factor for poxviruses in cell lines, is antagonized by two classes of poxvirus proteins, represented by vaccinia virus (VACV) K1 and C7. A paralog of SAMD9, SAMD9L, is also encoded by some mammals, while only one of two paralogs is retained by others. Here, we show that SAMD9L functions similarly to SAMD9 as a restriction factor and that the two paralogs form a critical host barrier that poxviruses must overcome to establish infection. In mice, which naturally lack SAMD9, overcoming SAMD9L restriction with viral inhibitors is essential for poxvirus replication and pathogenesis. While a VACV deleted of both K1 and C7 (vK1L-C7L-) was restricted by mouse cells and highly attenuated in mice, its replication and virulence were completely restored in SAMD9L-/- mice. In humans, both SAMD9 and SAMD9L are poxvirus restriction factors, although the latter requires interferon induction in many cell types. While knockout of SAMD9 with Crispr-Cas9 was sufficient for abolishing the restriction for vK1L-C7L- in many human cells, knockout of both paralogs was required for abolishing the restriction in interferon-treated cells. Both paralogs are antagonized by VACV K1, C7 and C7 homologs from diverse mammalian poxviruses, but mouse SAMD9L is resistant to the C7 homolog encoded by a group of poxviruses with a narrow host range in ruminants, indicating that host species-specific difference in SAMD9/SAMD9L genes serves as a barrier for cross-species poxvirus transmission.
Summary Interleukin‐35 (IL‐35) is a recently identified heterodimeric cytokine in the IL‐12 family. It consists of an IL‐12 subunit α chain (P35) and IL‐27 subunit Epstein–Barr virus‐induced gene 3 (EBI3) β chain. Unlike the other IL‐12 family members, it signals through four unconventional receptors: IL‐12Rβ2–IL‐27Rα, IL‐12Rβ2–IL‐12Rβ2, IL‐12Rβ2–GP130, and GP130–GP130. Interleukin‐35 signaling is mainly carried out through the signal transducer and activator of transcription family of proteins. It is secreted not only by regulatory T (Treg) cells, but also by CD8+ Treg cells, activated dendritic cells and regulatory B cells. It exhibits immunosuppressive functions distinct from those of other members of the IL‐12 family; these are mediated primarily by the inhibition of T helper type 17 cell differentiation and promotion of Treg cell proliferation. Interleukin‐35 plays a critical role in several immune‐associated diseases, such as autoimmune diseases and viral and bacterial infections, as well as in tumors. In this review, we summarize the structure and function of IL‐35, describe its role in immune‐related disorders, and discuss the mechanisms by which it regulates the development and progression of diseases, including inflammatory bowel disease, collagen‐induced arthritis, allergic airway disease, hepatitis, and tumors. The recent research on IL‐35, combined with improved techniques of studying receptors and signal transduction pathways, allows for consideration of IL‐35 as a novel immunotherapy target.
Background & AimsPatients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the in vitro impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the in vivo expression of gp120 in HIV/HCV coinfected livers.MethodsPrimary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.ResultsX4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.ConclusionsX4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.