We used the aerosol particle mass analyzer (APM) to measure the mass of mobility-classified diesel exhaust particles. This information enabled us to determine the effective density and fractal dimension of diesel particles as a function of engine load. We found that the effective density decreases as particle size increases. TEM images showed that this occurs because particles become more highly agglomerated as size increases. Effective density and fractal dimension increased somewhat as engine load decreased. TEM images suggest that this occurs because these particles contain more condensed fuel and/or lubricating oil. Also, we observed higher effective densities when high-sulfur EPA fuel (approximately 360 ppm S) was used than for Fischer-Tropsch fuel (approximately 0 ppm S). In addition, the effective density provides the relationship between mobility and aerodynamic equivalent diameters. The relationship between these diameters enables us to intercompare, in terms of a common measure of size, mass distributions measured with the scanning mobility particle sizer (SMPS) and a MOUDI impactor without making any assumptions about particle shape or density. We show that mass distributions of diesel particles measured with the SMPS-APM are in good agreement with distributions measured with a MOUDI and a nano-MOUDI for particles larger than approximately 60 nm. However, significantly more mass and greater variation were observed by the nano-MOUDI for particles smaller than 40 nm than by the SMPS-APM.
Graft copolymers with a large number of side chains chemically attached onto a linear backbone are endowed with unusual properties thanks to their confined and compact structures, including wormlike conformation, compact molecular dimensions and notable chain end effects. Growing attention has been paid to these interesting macromolecules due to their importance in understanding the correlation between architectures and properties, as well as their potential applications. To date, the synthesis and properties of graft copolymers in both solution and bulk have been extensively investigated, along with their applications. In this tutorial review, recent advances in synthetic approaches towards the construction of well-defined graft copolymers are discussed in detail and applications of these interesting macromolecules are highlighted by selected examples.
We report the preparation of a series of fiber-like micelles of narrow length distribution with an oligo(p-phenylenevinylene) (OPV)-core and a poly(N-isopropylacrylamide) (PNIPAM) corona via two different crystallization-driven self-assembly (CDSA) strategies. The average length L of these micelles can be varied up to 870 nm by varying the temperature in self-seeding experiments. In addition, seeded growth was employed not only to prepare uniform micelles of controlled length, but also to form fiber-like A-B-A triblock comicelles with an OPV-core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.