Isoalantolactone, a sesquiterpene lactone compound possesses antifungal, antibacteria, antihelminthic and antiproliferative activities. In the present study, we found that isoalantolactone inhibits growth and induces apoptosis in pancreatic cancer cells. Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of reactive oxygen species, cardiolipin oxidation, reduced mitochondrial membrane potential, release of cytochrome c and cell cycle arrest at S phase. N-Acetyl Cysteine (NAC), a specific ROS inhibitor restored cell viability and completely blocked isoalantolactone-mediated apoptosis in PANC-1 cells indicating that ROS are involved in isoalantolactone-mediated apoptosis. Western blot study showed that isoalantolactone increased the expression of phosphorylated p38 MAPK, Bax, and cleaved caspase-3 and decreased the expression of Bcl-2 in a dose-dependent manner. No change in expression of phosphorylated p38 MAPK and Bax was found when cells were treated with isoalantolactone in the presence of NAC, indicating that activation of these proteins is directly dependent on ROS generation. The present study provides evidence for the first time that isoalantolactone induces ROS-dependent apoptosis through intrinsic pathway. Furthermore, our in vivo toxicity study demonstrated that isoalantolactone did not induce any acute or chronic toxicity in liver and kidneys of CD1 mice at dose of 100 mg/kg body weight. Therefore, isoalantolactone may be a safe chemotherapeutic candidate for the treatment of human pancreatic carcinoma.
Most LG research has focused on the acinar cells, with relatively little attention being paid to the lacrimal ducts. The lack of knowledge regarding the lacrimal ducts was so profound that a precise nomenclature had not been established for the duct system. The present data establish a nomenclature for each segment of the lacrimal duct system and provide evidence that ducts play critical roles in lacrimal secretion.
Dracorhodin perchlorate has been recently shown to induce apoptotic cell death in cancer cells. However, the molecular mechanisms underlying these effects are unknown in human gastric tumor cells. In this study, effects of Dracorhodin perchlorate on cell viability, cell cycle, and apoptosis were investigated in SGC-7901 cells. The results showed that Dracorhodin perchlorate induced cellular and DNA morphological changes and decreased the viability of SGC-7901 cells. Dracorhodin perchlorate-mediated cell cycle arrest was associated with a marked decrease in protein levels of phosphorylated retinoblastoma and E2F1. Dracorhodin perchlorate-induced apoptosis is mediated via upregulation of p53, inhibiting the activation of PI3K/Akt, and NF-κB, thereby decreasing the expression of the anti-apoptotic proteins, Bcl-2 and Bcl-XL. Interestingly, we also found that Dracorhodin perchlorate significantly suppressed the IGF-1-induced phosphorylation of Akt in the stably expressing EGFP-Akt recombinant CHO-hIR cells and inhibited TNF-induced NF-κB transcriptional activity in the NF-κBp65-EGFP recombinant U2OS cells, indicating that inhibition of PI3K/Akt and NF-κB may provide a molecular basis for the ability of Dracorhodin perchlorate to induce apoptosis. Dracorhodin perchlorate induced up-regulation of p53, thereby resulting in the activation of its downstream targets p21 and Bax following the dissipation of mitochondrial membrane potential and activation of caspase-3 and its substrate, PARP. Moreover, Dracorhodin perchlorate dramatically enhanced the wortmannin- and TNF-induced apoptosis in SGC-7901 cells. These results reveal functional interplay among the PI3K/Akt, p53 and NF-κB pathways that are frequently deregulated in cancer and suggest that their simultaneous targeting by Dracorhodin perchlorate could result in efficacious and selective killing of cancer cells.
PurposeTo evaluate the efficacy of topical rapamycin in treating autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome.MethodsWe developed rapamycin in a poly(ethylene glycol)-distearoyl phosphatidylethanolamine (PEG-DSPE) micelle formulation to maintain solubility. Rapamycin or PEG-DSPE eye drops (vehicle) were administered in a well-established Sjögren's syndrome disease model, the male nonobese diabetic (NOD) mice, twice daily for 12 weeks starting at 8 weeks of age. Mouse tear fluid was collected and tear Cathepsin S, a putative tear biomarker for Sjögren's syndrome, was measured. Lacrimal glands were retrieved for histological evaluation, and quantitative real-time PCR of genes associated with Sjögren's syndrome pathogenesis. Tear secretion was measured using phenol red threads, and corneal fluorescein staining was used to assess corneal integrity.ResultsLymphocytic infiltration of lacrimal glands from rapamycin-treated mice was significantly (P = 0.0001) reduced by 3.8-fold relative to vehicle-treated mice after 12 weeks of treatment. Rapamycin, but not vehicle, treatment increased tear secretion and decreased corneal fluorescein staining after 12 weeks. In rapamycin-treated mice, Cathepsin S activity was significantly reduced by 3.75-fold in tears (P < 0.0001) and 1.68-fold in lacrimal gland lysates (P = 0.003) relative to vehicle-treated mice. Rapamycin significantly altered the expression of several genes linked to Sjögren's syndrome pathogenesis, including major histocompatibility complex II, TNF-α, IFN-γ, and IL-12a, as well as Akt3, an effector of autophagy.ConclusionsOur findings suggest that topical rapamycin reduces autoimmune-mediated lacrimal gland inflammation while improving ocular surface integrity and tear secretion, and thus has potential for treating Sjögren's syndrome–associated dry eye.
The lacrimal glands of male NOD mice exhibit many of the features of the human lacrimal gland in patients afflicted with the autoimmune disease, Sjögren's syndrome, including loss of secretory functions and lymphocytic infiltration into the lacrimal gland. To elucidate the early changes in the secretory pathway associated with development of Sjögren's syndrome, we investigated the organization of the exocytotic pathway in lacrimal glands of age-matched male BALB/c and NOD mice. Cryosections from lacrimal glands from 1 and 4 month male BALB/c and NOD mice were processed for confocal fluorescence and electron microscopic evaluation of different participants in exocytosis. No changes in apical actin filaments were noted in glands from NOD mice, but these glands exhibited thickening of basolateral actin relative to that seen in the BALB/c mice. Rab3D immunofluorescence associated with mature secretory vesicles was distributed abundantly in a continuous vesicular network concentrated beneath the apical plasma membrane in glands from 1 and 4 month BALB/c mice. In glands from 1 month NOD mice, rab3D immunofluorescence exhibited marked discontinuity and irregularity in the vesicular labeling pattern. While this change was also detected in glands from 4 month NOD mice, many of these glands exhibited an additional extension of rab3D labeling through the cell to the basolateral membrane. Electron microscopic analysis confirmed the formation of irregularly-shaped, unusually large secretory vesicles in lacrimal glands from NOD mice. Quantitation of multiple secretory vesicles from electron micrographs revealed a significant (p ≤5) increase in the percentage of secretory vesicles incorporated into multivesicular aggregates in lacrimal glands from 1 and 4 month NOD mice compared to BALB/c mice. The M3 muscarinic receptor, a key signaling effector of exocytosis, was redistributed away from its normally basolateral locale in glands from BALB/c mice, with concomitant enrichment in intracellular aggregates in glands from NOD mice. These findings show that lacrimal glands in NOD mice as young as 1 month contain aberrant secretory vesicles with altered effector composition that undergo premature cytoplasmic fusion, and that changes in the distribution of the M3 muscarinic receptor occur within the same time frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.