bUnderstanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative realtime PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P ؍ 0.088) and Firmicutes (P ؍ 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P ؍ 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen. R ecent years have witnessed growing interest in the diversity and function of ruminal epithelial bacteria. It has been demonstrated that ruminal epithelial bacteria are involved in oxygen scavenging, tissue recycling, and urea digestion (1). Furthermore, in steers, the ruminal epithelial bacterial communities of acidosisresistant and acidosis-susceptible groups were different during subacute ruminal acidosis development, and this difference could be recognized by the host TLRs (Toll-like receptors), which are associated with changes in the function of the rumen epithelial tissue barrier (2). Similarly, in the mouse colon, epithelial bacterial diversity correlated with TLR2 and TLR4 gene expression (3). These findings reveal that since epithelial bacteria are directly attached to the epithelial surface, their end products may play a direct or indirect role in host immune responses and tissue barrier function.Ruminal epithelial bacteria are distinctly different at the taxonomic level from bacteria associated with rumen contents (4, 5). By use of culture-based tech...
The aim of the present study was to describe age-related changes in anatomic, functional and microbial variables during the rumen development process, as affected by the feeding system (supplemental feeding v. grazing), in goats. Goats were slaughtered at seven time points that were selected to reflect the non-rumination (0, 7 and 14 d), transition (28 and 42 d) and rumination (56 and 70 d) phases of rumen development. Total volatile fatty acid (TVFA) concentration (P¼ 0·002), liquid-associated bacterial and archaeal copy numbers (P, 0·01) were greater for supplemental feeding v. grazing, while rumen pH (P,0·001), acetate molar proportion (P¼0·003) and solid-associated microbial copy numbers (P,0·05) were less. Rumen papillae length (P¼0·097) and extracellular (P¼0·093) and total (P¼0·073) protease activity potentials in supplemented goats tended to be greater than those in grazing goats. Furthermore, from 0 to 70 d, irrespective of the feeding system, rumen weight, rumen wall thickness, rumen papillae length and area, TVFA concentration, xylanase, carboxymethylcellulase activity potentials, and microbial copy numbers increased (P,0·01) with age, while the greatest amylase and protease activity potentials occurred at 28 d. Most anatomic and functional variables evolved progressively from 14 to 42 d, while microbial colonisation was fastest from birth to 28 d. These outcomes suggest that the supplemental feeding system is more effective in promoting rumen development than the grazing system; in addition, for both the feeding systems, microbial colonisation in the rumen is achieved at 1 month, functional achievement at 2 months, and anatomic development after 2 months.
The effects of yeast culture and fibrolytic enzyme preparation (containing cellulase and xylanase) on in vitro fermentation characteristics of rice straw, wheat straw, maize stover, and maize stover silage were examined using an in vitro gas production technique. Four levels of yeast culture and fibrolytic enzyme supplements (0, 2.5, 5.0, and 7.5 g/kg of straw DM, respectively) were tested in a 4 x 4 factorial arrangement. Supplementation of yeast culture increased the cumulative gas production, theoretical maximum of gas production, rate of gas production, IVDMD, and in vitro OM disappearance (IVOMD), and decreased the lag time for each type of straw. Fibrolytic enzyme supplementation tended to increase cumulative gas production, theoretical maximum of gas production, and rate of gas production; prolonged lag time of gas production; and enhanced IVDMD and IVOMD for 4 types of cereal straws, with the significance of this effect being dependent on the level of supplemented enzymes. There were significant interactions between fibrolytic enzymes and yeast on all in vitro gas production parameters, IVDMD, and IVOMD of each type of straw. The outcome of this research indicated that the application of fibrolytic enzyme preparation and yeast culture could improve in vitro gas production fermentation of cereal straws.
This study was performed to investigate the initial colonization of metabolically active methanogens and subsequent changes in four fractions: the rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) from 1 to 60 d after birth, and manipulate methanogen community by early weaning on 40 d and supplementing rhubarb from 40 to 60 d in black goats. The RNA-based real-time quantitative PCR and 16S rRNA amplicon sequencing were employed to indicate the metabolically active methanogens. Results showed that active methanogens colonized in RL and RE on 1 d after birth. RP and RE contained the highest and lowest density of methanogens, respectively. Methanobrevibacter, Candidatus Methanomethylophilus, and Methanosphaera were the top three genera. The methanogen communities before weaning differed from those post weaning and the structure of the methanogen community in RE was distinct from those in the other three fractions. The discrepancies in the distribution of methanogens across four fractions, and various fluctuations in abundances among four fractions according to age were observed. The addition of rhubarb significantly (P < 0.05) reduced the abundances of Methanimicrococcus spp. in four fractions on 50 d, but did not change the methanogen community composition on 60 d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.