More and more evidence advises that circular RNAs (circRNAs) function critically in regulating different disease microenvironments. Our previous study found that autotransplantation of adipose-derived mesenchymal stem cells (ADSCs) promotes diabetes wound healing. Exosomes derived in ADSCs play an important regulatory role. This study aimed to characterize if mmu_circ_0000250 played a role in ADSC-exosome-mediated full-thickness skin wound repair in diabetic rats. Endothelial progenitor cells (EPCs) were selected to study the therapeutic mechanism of exosomes in high-glucose (HG)-induced cell damage and dysfunction. Analysis and luciferase reporter assay were utilized to explore the interaction among mmu_circ_0000250, miRNA (miR)-128-3p, and sirtuin (SIRT)1. The diabetic rats were used to confirm the therapeutic effect of mmu_circ_0000250 against exosome-mediated wound healing. Exosomes containing a high concentration of mmu_circ_0000250 had a greater therapeutic effect on restoration of the function of EPCs by promotion autophagy activation under HG conditions. Expression of mmu_circ_0000250 promoted SIRT1 expression by miR-128-3p adsorption, which was confirmed via luciferase reporter assay and bioinformatics analysis. In vivo, exosomes containing a high concentration of mmu_circ_0000250 had a more therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. Immunohistochemistry and immunofluorescence detection showed that mmu_circ_0000250 increased angiopoiesis with exosome treatment in wound skin and suppressed apoptosis by autophagy activation. In conclusion, we verified that mmu_circ_0000250 enhanced the therapeutic effect of ADSC-exosomes to promote wound healing in diabetes by absorption of miR-128-3p and upregulation of SIRT1. Therefore, these findings advocate targeting the mmu_circ_0000250/miR-128-3p/SIRT1 axis as a candidate therapeutic option for diabetic ulcers.
BackgroundDiabetic foot ulcer (DFU) is an intractable diabetic complication. Patients suffering from diabetes mellitus (DM) frequently present with infected DFUs. In this study, a wound healing model on diabetic rat foot was established to mimic the pathophysiology of clinical patients who suffer from DFUs. Our study aimed to explore the localization of human adipose-derived stem cells (hADSCs) and the role of these cells in the repair of foot ulcerated tissue in diabetic rats, and thus to estimate the possibilities of adipose-derived stem cells for diabetic wound therapy.MethodSprague–Dawley rats were used to establish diabetic models by streptozotocin injection. A full-thickness foot dorsal skin wound was created by a 5 mm skin biopsy punch and a Westcott scissor. These rats were randomly divided into two groups: the hADSC-treated group and the phosphate-buffered saline (PBS) control group. The hADSC or PBS treatment was delivered through the left femoral vein of rats. We evaluated the localization of hADSCs with fluorescence immunohistochemistry and the ulcer area and ulcerative histology were detected dynamically.ResultThe hADSCs had a positive effect on the full-thickness foot dorsal skin wound in diabetic rats with a significantly reduced ulcer area at day 15. More granulation tissue formation, angiogenesis, cellular proliferation, and higher levels of growth factors expression were also detected in wound beds.ConclusionsOur data suggest that hADSC transplantation has the potential to promote foot wound healing in diabetic rats, and transplantation of exogenous stem cells may be suitable for clinical application in the treatment of DFU.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0412-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.