In geologic, biologic, and engineering porous media, bubbles (or droplets, ganglia) emerge in the aftermath of flow, phase change, or chemical reactions, where capillary equilibrium of bubbles significantly impacts the hydraulic, transport, and reactive processes. There has previously been great progress in general understanding of capillarity in porous media, but specific investigation into bubbles is lacking. Here, we propose a conceptual model of a bubble’s capillary equilibrium associated with free energy inside a porous medium. We quantify the multistability and hysteretic behaviors of a bubble induced by multiple state variables and study the impacts of pore geometry and wettability. Surprisingly, our model provides a compact explanation of counterintuitive observations that bubble populations within porous media can be thermodynamically stable despite their large specific area by analyzing the relationship between free energy and bubble volume. This work provides a perspective for understanding dispersed fluids in porous media that is relevant to CO2 sequestration, petroleum recovery, and fuel cells, among other applications.
Bubbles in subsurface porous media spontaneously coarsen to reduce free energy. Bubble coarsening dramatically changes surface area and pore occupancy, which affect the hydraulic conductivity, mass and heat transfer coefficients, and chemical reactions. Coarsening kinetics in porous media is thus critical in modeling geologic CO2 sequestration, hydrogen subsurface storage, hydrate reservoir recovery, and other relevant geophysical problems. We show that bubble coarsening kinetics in porous media fundamentally deviates from classical Lifshitz‐Slyozov‐Wagner theory, because porous structure quantizes the space and rescales the mass transfer coefficient. We develop a new coarsening theory that agrees well with numerical simulations. We identify a pseudo‐equilibrium time proportional to the cubic of pore size. In a typical CO2 sequestration scenario, local equilibrium can be achieved in 1s for media consisting of sub‐micron pores, while in decades for media consisting of 1 mm pores. This work provides new insights in modeling complex fluid behaviors in subsurface environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.