BackgroundEvidence indicates that soluble forms of amyloid-β (Aβ) are vasoactive, which may contribute to cerebrovascular dysfunction noted in patients with Alzheimer's Disease and cerebral amyloid angiopathy. The effects of soluble Aβ on penetrating cerebral arterioles - the vessels most responsible for controlling cerebrovascular resistance - have not been studied.ResultsFreshly dissolved Aβ1-40 and Aβ1-42, but not the reverse peptide Aβ40-1 constricted isolated rat penetrating arterioles and diminished dilation to adenosine tri-phosphate (ATP). Aβ1-42 also enhanced ATP-induced vessel constriction. Aβ1-40 diminished arteriolar myogenic response, and an anti-Aβ antibody reduced Aβ1-40 induced arteriolar constriction. Prolonged Aβ exposure in vessels of Tg2576 mice resulted in a marked age-dependent effect on ATP-induced vascular responses. Vessels from 6 month old Tg2576 mice had reduced vascular responses whereas these were absent from 12 month old animals. Aβ1-40 and Aβ1-42 acutely increased production of reactive oxygen species (ROS) in cultured rat cerebro-microvascular cells. The radical scavenger MnTBAP attenuated this Aβ-induced oxidative stress and Aβ1-40-induced constriction in rat arterioles.ConclusionsOur results suggest that soluble Aβ1-40 and Aβ1-42 directly affect the vasomotor regulation of isolated rodent penetrating arterioles, and that ROS partially mediate these effects. Once insoluble Aβ deposits are present, arteriolar reactivity is greatly diminished.
Background: Adenosine triphosphate (ATP), a potent vascular regulator in the cerebral circulation, initiates conducted vasomotor responses which may be impaired after pathological insults. We analyzed the mechanism of ATP-induced local vasomotor responses and their effect on conducted vasomotor responses in rat cerebral penetrating arterioles. Methods: Arterioles were cannulated and their internal diameter monitored. Vasomotor responses to ATP were observed in the presence or absence of inhibitors, or after endothelial impairment. Smooth muscle membrane potentials were measured in some vessels. Results: Microapplication of ATP produced a biphasic response (constriction followed by dilation), which resulted in conducted dilation preceded by a membrane hyperpolarization. α,β-methylene-ATP or pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) blunted the ATP-mediated constriction and enhanced local and conducted dilation. Nω-monomethyl-L-arginine, endothelial impairment and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduced the local dilation caused by ATP. The conducted dilation was attenuated by MS-PPOH and endothelial impairment, but not Nω-monomethyl-L-arginine or indomethacin. Conclusion: ATP-induced conducted dilation is preceded by membrane hyperpolarization. Local ATP induces initial local constriction via smooth-muscle P2X1 and subsequent dilation via endothelial P2Y receptors. Nitric oxide, cytochrome P450 metabolites, and intermediate and large conductance KCa channels mediate dilation caused by ATP. ATP-induced conducted dilation is dependent upon both the endothelium and cytochrome P450 metabolites.
As part of our ongoing research to identify novel agents acting at metabotropic glutamate 2 (mGlu2) and 3 (mGlu3) receptors, we have previously reported the identification of the C4α-methyl analog of mGlu2/3 receptor agonist 1 (LY354740). This molecule, 1S,2S,4R,5R,6S-2-amino-4-methylbicyclo[3.1.0]hexane-2,6-dicarboxylate 2 (LY541850), exhibited an unexpected mGlu2 agonist/mGlu3 antagonist pharmacological profile, whereas the C4β-methyl diastereomer (3) possessed dual mGlu2/3 receptor agonist activity. We have now further explored this structure-activity relationship through the preparation of cyclic and acyclic C4-disubstituted analogs of 1, leading to the identification of C4-spirocyclopropane 5 (LY2934747), a novel, potent, and systemically bioavailable mGlu2/3 receptor agonist which exhibits both antipsychotic and analgesic properties in vivo. In addition, through the combined use of protein-ligand X-ray crystallography employing recombinant human mGlu2/3 receptor amino terminal domains, molecular modeling, and site-directed mutagenesis, a molecular basis for the observed pharmacological profile of compound 2 is proposed.
Mechanisms of oligodendrocyte death after spinal cord injury (SCI) were evaluated by T9 cord level hemisection in wild-type mice (C57BL/6J and Bax+/+ mice), Wlds mice in which severed axons remain viable for 2 weeks, and mice deficient in the proapoptotic protein Bax (Bax-/-). In the lateral white-matter tracts, substantial oligodendrocyte death was evident in the ipsilateral white matter 3-7 mm rostral and caudal to the hemisection site 8 d after injury. Ultrastructural analysis and expression of anti-activated caspase-3 characterized the ongoing oligodendrocyte death at 8 d as primarily apoptotic. Oligodendrocytes were selectively preserved in Wlds mice compared with C57BL/6J mice at 8 d after injury, when severed axons remained viable as verified by antereograde labeling of the lateral vestibular spinal tract. However, 30 d after injury when the severed axons in Wlds animals were already degenerated, the oligodendrocytes preserved at 8 d were lost, and numbers were then equivalent to control C57BL/6J mice. In contrast, oligodendrocyte death was prevented at both time points in Bax-/- mice. When cultured oligodendrocytes were exposed to staurosporine or cyclosporin A, drugs known to stimulate apoptosis in oligodendrocytes, those from Bax-/- mice but not from Bax+/+ or Bax+/- mice were resistant to the apoptotic death. In contrast, the three groups were equally vulnerable to excitotoxic necrosis death induced by kainate. On the basis of these data, we hypothesize that the Wallerian degeneration of white matter axons that follows SCI removes axonal support and induces apoptotic death in oligodendrocytes by triggering Bax expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.