Dust deposition on solar photovoltaic (PV) cells will dramatically reduce the photovoltaic power output. Self-cleaning coating may be a novel method to decrease dust deposition problems. This paper compares self-cleaning performances and mechanisms of super-hydrophobic and super-hydrophilic coating on dirt deposition decrease for solar photovoltaic cells by experimental measurement. In the process of the deposition of dust on solar cells, covering glass, coated and uncoated, is conducted under natural settling conditions. Moreover, the dust removal efficiency of the glass samples with and without coatings is studied under water spraying conditions. The wettability of different surfaces, dust deposition mass, dust removal efficiency, self-cleaning mechanisms, and transmittance of glass samples are investigated and analyzed. Under natural settling conditions, the deposition mass reduction ratio by the super-hydrophilic coating is only 8.1%, while it can reach 85.8% by the super-hydrophobic coating because of surface micro-structures and low surface energy. However, after the water spraying process, the remaining dust mass ratio for the super-hydrophobic surface is only 16.5%, while it is 18.6% for the super-hydrophilic surface. The self-cleaning mechanism of super-hydrophobic coating is that most deposited particles of dust are removed from glass samples by the rolling of liquid droplets. However, the self-cleaning mechanism of super-hydrophilic coating is the breakup of the liquid film. Therefore, both coatings can effectively reduce dust deposition under water spraying conditions. The average transmittance of super-hydrophobic and super-hydrophilic coatings after the water spraying process is 91.1% and 86.4%, respectively, while it is only 61.1% for the uncoated glass sample.
Large-scale solar photovoltaic (PV) power plants tend to be set in desert areas, which enjoy high irradiation and large spaces. However, due to frequent sandstorms, large amounts of contaminants and dirt are suspended in the air and deposited on photovoltaic modules, which greatly decreases the power efficiency and service life. To clean PV to improve efficiency, many methods were proposed. It was found that the application of the self-cleaning coating on PV modules can effectively reduce dust deposition and improve the efficiency of PV. This paper reviews the dust deposition mechanism on photovoltaic modules, classifies the very recent dust removal methods with a critical review, especially focusing on the mechanisms of super-hydrophobic and super-hydrophilic coatings, to serve as a reference for researchers and PV designers, and presents the current state of knowledge of the aspects mentioned above to promote sustainable improvement in PV efficiency. It was found that the behaviors of dust on photovoltaic modules are mainly deposition, rebound, and resuspension. Particles with a diameter of 1–100 μm are most easily deposited on photovoltaic modules. The use of self-cleaning coatings, especially super-hydrophobic coatings, is beneficial to the rebound and resuspension of particles. The research gaps and development prospects of self-cleaning coatings are also discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.