Compared with traditional manual inspection, inspection robots can not only meet the all-weather, real-time, and accurate inspection needs of substation inspection, they also reduce the work intensity of operation and maintenance personnel and decrease the probability of safety accidents. For the urgent demand of substation inspection robot intelligence enhancement, an environment understanding algorithm is proposed in this paper, which is an improved DeepLab V3+ neural network. The improved neural network replaces the original dilate rate combination in the ASPP (atrous spatial pyramid pooling) module with a new dilate rate combination with better segmentation accuracy of object edges and adds a CBAM (convolutional block attention module) in the two up-samplings, respectively. In order to be transplanted to the embedded platform with limited computing resources, the improved neural network is compressed. Multiple sets of comparative experiments on the standard dataset PASCAL VOC 2012 and the substation dataset have been made. Experimental results show that, compared with the DeepLab V3+, the improved DeepLab V3+ has a mean intersection-over-union (mIoU) of eight categories of 57.65% on the substation dataset, with an improvement of 6.39%, and the model size of 13.9 M, with a decrease of 147.1 M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.