Aiming to advance the coning algorithm performance of strapdown inertial navigation systems, a new half-compressed coning correction structure is presented. The half-compressed algorithm structure is analytically proven to be equivalent to the traditional compressed structure under coning environments. The half-compressed algorithm coefficients allow direct configuration from traditional compressed algorithm coefficients. A type of algorithm error model is defined for coning algorithm performance evaluation under maneuver environment conditions. Like previous uncompressed algorithms, the half-compressed algorithm has improved maneuver accuracy and retained coning accuracy compared with its corresponding compressed algorithm. Compared with prior uncompressed algorithms, the formula for the new algorithm coefficients is simpler.
A new coning correction structure is presented for attitude update coning correction. Different from the previous rate-based and increment-based coning correction structures, the new structure contains cross-product of angular rates, cross-product of angular increments, and cross-product of angular rate and increment (an angular increment may be approximated from angular rate samples). Two types of optimization methods including time Taylor-series method and frequency Taylor-series method were utilized to design the structure coefficients including the uncompressed and the compressed. Two types of algorithm error models including one applicable to coning environments and the other two applicable to maneuver environments were defined and used for analyzing or evaluating the algorithm performance. The derivation procedure of a rotation vector magnitude extraction method is included. Analysis and simulation results indicate that the new structure-based algorithm with the compressed coefficients designed by using frequency Taylor-series method gives a superior algorithm performance in coning environments and maneuver environments.
Due to an oversight by MDPI and the authors, the following numerical corrections were not made in the originally published article [1]. MDPI-Sensors and the authors would like to apologize for any inconvenience brought to the readers.[...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.