Glioma is the most common type of primary tumor of the central nervous system. The present study aimed to demonstrate the role of miR-101 and cyclooxygenase-2 (COX-2) in the initiation and development of glioma. The expression of miR-101 and COX-2 in normal and malignant human glial cells and tissues was determined by western blotting and quantitative polymerase chain reaction analysis. The role of miR-101 on COX-2 expression was evaluated by a dual-luciferase reporter assay. The effects of miR-101 and COX-2 in glioma cell proliferation and invasion was verified by CCK-8 test and Transwell assays, respectively. The present study demonstrated that miR-101 expression was downregulated while COX-2 was upregulated in glioma tissues and cells. Furthermore, transfection of miR-101 significantly downregulated COX-2 expression in both U373 and U87 glioma cells. In addition, further experiments revealed that overexpression of miR-101 resulted in significant inhibition of the in vitro proliferation and migration of glioma cells, and the in vivo growth of established tumors. Direct downregulation of COX-2 by transfection with corresponding small interfering RNA also inhibited the proliferation and invasion of glioma cells. These results indicate that downregulation of miR-101 is involved in the initiation and development of glioma via COX-2 upregulation.
It has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line. In the present study, Sp1 was identified to directly bind to the GLUT3 5′-untranslated region in human glioma U251 cells. Small interfering RNA- and the Sp1-inhibitor mithramycin A-mediated Sp1 knockdown experiments revealed that Sp1 depletion decreased glucose uptake and inhibited cell growth and invasion of U251 cells by downregulating GLUT3 expression. Therefore Sp1 is an important positive regulator for the expression of GLUT3 in human glioma cells, and may explain the overexpression of GLUT3 in U251 cells. These results suggest that Sp1 may have a role in glioma treatment.
Transplantation of human amniotic mesenchymal stem cells (hAM-MSCs) seems to be a promising strategy for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, the clinical therapeutic effects of hAM-MSCs and their mechanisms of action in AD remain to be determined. Here, we used amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice to evaluate the effects of hAM-MSC transplantation on AD-related neuropathology and cognitive dysfunction. We found that hAM-MSC transplantation into the hippocampus dramatically reduced amyloid-β peptide (Aβ) deposition and rescued spatial learning and memory deficits in APP/PS1 mice. Interestingly, these effects were associated with increasing in Aβ-degrading factors, elevations in activated microglia, and the modulation of neuroinflammation. Furthermore, enhanced hippocampal neurogenesis in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhanced synaptic plasticity following hAM-MSC treatment could be another important factor in reversing the cognitive decline in APP/PS1 mice. Instead, the mechanism underlying the improved cognition apparently involves a robust increase in hippocampal synaptic density and neurogenesis that is mediated by brain-derived neurotrophic factor (BDNF). In conclusion, our data suggest that hAM-MSCs may be a new and effective therapy for the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.