A high-voltage direct-current (HVDC) grid protection strategy to suppress dc fault currents and prevent overcurrent in the arms of modular multilevel converters (MMCs) is proposed in this paper. The strategy is based on the coordination of half-bridge MMCs and hybrid dc circuit breakers (DCCBs). This is achieved by allowing MMC submodules to be temporarily bypassed prior to the opening of the DCCBs. Once the fault is isolated by the DCCBs, the MMCs will restore to normal operation. The performance of the proposed method is assessed and compared to when MMCs are blocked and when no corrective action is taken. To achieve this, an algorithm for fault detection and discrimination is used and its impact on MMC bypassing is discussed. To assess its effectiveness, the proposed algorithm is demonstrated in PSCAD/EMTDC using a four-terminal HVDC system. Simulation results show that the coordination of MMCs and DCCBs can significantly reduce dc fault current and the absorbed current energy by more than 70% and 90%, respectively, while keeping MMC arm currents small.
Grid-forming inverters usually use inner cascaded controllers to regulate output AC voltage and converter output current. However, at the power transmission system level where the power inverter bandwidth is limited, i.e., low switching frequency, it is difficult to tune controller parameters to achieve the desired performances because of control loop interactions. In this paper, a direct AC voltage control-based state-feedback control is applied. Its control gains are tuned using a linear quadratic regulator. In addition, a sensitivity analysis is proposed to choose the right cost factors that allow the system to achieve the imposed specifications. Conventionally, a system based on direct AC voltage control has no restriction on the inverter current. Hence, in this paper, a threshold virtual impedance has been added to the state-feedback control in order to protect the inverter against overcurrent. The robustness of the proposed control is assessed for different short-circuit ratios using smallsignal stability analysis. Then, it is checked in different grid topologies using time domain simulations. An experimental test bench is developed in order to validate the proposed control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.