Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10–50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20–25 nm and ~4–5 Ab (or ~7–9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that: i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and, ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers.
To improve the pharmacological profile of tumor necrosis factor alpha (TNF-α), we have synthesized a new PEGylated prodrug, PEG-vcTNF-α, using a cathepsin B-sensitive dipeptide (valine-citrulline, vc) to link branched PEG and TNF-α. PEG-modified TNF-α without the dipeptide linker (PEG-TNF-α) and unconjugated TNF-α were also tested as controls. It was found for the first time that TNF-α released from PEG-vcTNF-α was specifically dependent on the presence of cathepsin B. PEG-vcTNF-α induced higher cytotoxicity and greater apoptosis against L929 murine fibrosarcoma cells than PEG-TNF-α. Reversal of these effects by a cathepsin-B inhibitor confirmed that these effects were mediated by cathepsin B-specific release of TNF-α. In vivo pharmacokinetics studies demonstrated that the plasma stability of PEG-vcTNF-α was significantly increased compared to TNF-α. Finally, the improved anticancer efficacy of PEG-vcTNF-α and the distinct activities among the three formulations confirmed the positive contribution of both PEGylation and the dipeptide linkage to the improved drug-like properties of PEG-vcTNF-α. The results here indicate that linking proteins and PEG via the cathepsin B-sensitive dipeptide may be a promising strategy for developing protein therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.