Abstract-In this letter, a message-passing algorithm that combines belief propagation and expectation propagation is applied to design an iterative receiver for intersymbol interference channels. We detail the derivation of the messages passed along the nodes of a vector-form factor graph representing the underlying probabilistic model. We also present a simple but efficient method to cope with the "negative variance" problem of expectation propagation. Simulation results show that the proposed algorithm outperforms, in terms of bit-error-rate and convergence rate, a LMMSE turbo-equalizer based on Gaussian message passing with the same order of computational complexity.
This paper concerns message passing based approaches to sparse Bayesian learning (SBL) with a linear model corrupted by additive white Gaussian noise with unknown variance. With the conventional factor graph, mean field (MF) message passing based algorithms have been proposed in the literature. In this work, instead of using the conventional factor graph, we modify the factor graph by adding some extra hard constraints (the graph looks like being 'stretched'), which enables the use of combined belief propagation (BP) and MF message passing. We then propose a low complexity BP-MF SBL algorithm based on which an approximate BP-MF SBL algorithm is also developed to further reduce the complexity. Thanks to the use of BP, the BP-MF SBL algorithms show their merits compared with state-of-the-art MF SBL algorithms: they deliver even better performance with much lower complexity compared with the vector-form MF SBL algorithm and they significantly outperform the scalar-form MF SBL algorithm with similar complexity.Index Terms-sparse Bayesian learning, message passing, BP-MF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.