Graphene has attracted extensive attention for the supply of electrically conductive, optically transparent, and mechanical robust electrodes for flexible optoelectrical devices, as an alternative to commercial indium tin oxide, due to its superior mechanical, electrical, and optical properties. However, conventional chemical vapor deposition is impeded by harsh conditions and complicated processes, and it is still a challenge to fabricate high-performance graphene transparent electrode in a facile and scalable solution-processable route. Herein, a wetting-induced scalable solution-processable approach to fabricate graphene hybrid with conductive ionogel and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), i.e., graphene/ionogel@PEDOT:PSS (G/Ionogel@PEDOT:PSS), for high-performance flexible transparent electrode (FTE) is reported, achieving a low sheet resistance of 30 Ω sq–1 and a high transmittance of 88% at 550 nm. The as-fabricated trinary hybrid FTE as both transparent electrode and electrochromic layer is applied to a compact indium tin oxide (ITO)-free three-layered flexible electrochromic device, showing fast switching response, good electrochromic contrast, and reliable stability. Our work enables a scalable solution-processable approach for the generation of graphene-based FTE and functional devices.
Exploring efficient and robust antibacterial materials is crucially important for human health and ecological security. Compared with intrinsically antibacterial materials, materials modified with antibacterial agents either by chemical or physical modification can simultaneously maintain basic functions and antibacterial properties. In particular, physical modification with antiseptic sprays is quite suitable for large-size objects in our daily life but restricted by high volatility of the antibacterial agents or poor adhesion strength between the antibacterial agents and the targeted objects. In this paper, we report a poly(ionic liquid) (PIL-Cn)-based efficient and robust antiseptic spray that exhibits long-term antibacterial properties against both Gram-positive and Gram-negative bacteria on diverse substrates, including glass, PE, and cotton. It is believed that this work will provide an alternative for current antiseptic sprays for usage in our daily life and hospitals.
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Ionogels have been extensively studied as ideal flexible and stretchable materials by virtue of the unique properties of ionic liquids, such as non-volatility, non-flammability, and negligible vapor pressure. However, the generally low ionic conductivity of the current ionogels limits their applications in the market of highly conductive, flexible, and stretchable electrical devices. Here, the fabrication of highly electrically conductive ionogels is reported by combining composite liquids consisting of 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with flexible negative-charged poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel. The generated composite film exhibits high electrical conductivity up to about 38 S cm −1 with the maximum tensile strain of 45% and fracture stress of 27 kPa. In addition, it is demonstrated that the composite film can maintain conductivity in a high level under different mechanical deformations, and can also be used as flexible sensors in a wide temperature range from −58 to 120 °C. It is believed that the designed composite film would expand the applications of flexible conductive materials where both high conductivity and robust mechanical flexibility are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.