Purpose The purpose of this paper is to identify smaller wear particles and improve the calculation speed, identify more abrasive particles and promote industrial applications. Design/methodology/approach This paper studies a new intelligent recognition method for equipment wear debris based on the YOLO V5S model released in June 2020. Nearly 800 ferrography pictures, 23 types of wear debris, about 5,000 wear debris were used to train and test the model. The new lightweight approach of wear debris recognition can be implemented in rapidly and automatically and also provide for the recognition of wear debris in the field of online wear monitoring. Findings An intelligent recognition method of wear debris in ferrography image based on the YOLO V5S model was designed. After the training, the GIoU values of the model converged steadily at about 0.02. The overall precision rate and recall rate reached 0.4 and 0.5, respectively. The overall MAP value of each type of wear debris was 40.5, which was close to the official recognition level of YOLO V5S in the MS COCO competition. The practicality of the model was approved. The intelligent recognition method of wear debris based on the YOLO V5S model can effectively reduce the sensitivity of wear debris size. It also has a good recognition effect on wear debris in different sizes and different scales. Compared with YOLOV. YOLOV, Mask R-CNN and other algorithms%2C, the intelligent recognition method based on the YOLO V5S model, have shown their own advantages in terms of the recognition effect of wear debris%2C the operation speed and the size of weight files. It also provides a new function for implementing accurate recognition of wear debris images collected by online and independent ferrography analysis devices. Originality/value To the best of the authors’ knowledge, the intelligent identification of wear debris based on the YOLO V5S network is proposed for the first time, and a large number of wear debris images are verified and applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.