Abstract:Cordyceps sinensis is an endoparasitic fungus widely used as a tonic and medicinal food in the practice of traditional Chinese medicine (TCM). In historical usage, Cordyceps specifically is referring to the species of C. sinensis. However, a number of closely related species are named themselves as Cordyceps, and they are sold commonly as C. sinensis. The substitutes and adulterants of C. sinensis are often introduced either intentionally or accidentally in the herbal market, which seriously affects the therapeutic effects or even leads to life-threatening poisoning. Here, we aim to identify Cordyceps by DNA sequencing technology. Two different DNA-based approaches were compared. The internal transcribed spacer (ITS) sequences and the random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) were developed here to authenticate different species of Cordyceps. Both approaches generally enabled discrimination of C. sinensis from others. The application of the two methods, supporting each other, increases the security of identification. For better reproducibility and faster analysis, the SCAR markers derived from the RAPD results provide a new method for quick authentication of Cordyceps.
Background Leonuri Herba (Yimucao) is a very common Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins. Methods UHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis. And a quantitative UHPLC-QTOF-MS/MS approach were established to investigate the potential marker for quality control of Leonuri Herba. Results A total of 49 chromatographic peaks of Leonuri Herba were identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS. Conclusion The current strategy not only clearly expounded the correlation between quality and geographical origins of Leonuri Herba, but also provided a fast, accurate and comprehensive qualitative and quantitative method for assessing the quality of Leonuri Herba.
BackgroundLeonuri Herba (Yimucao) is a very commonly Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins.MethodsUHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis.ResultsA total of 49 chromatographic peaks of Leonuri Herba were unequivocally or tentatively identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS.ConclusionThis systematic information could ensure Leonuri Herba with well-controlled quality and safe use in clinic. This study could also provide a research model for further study of other Chinese Materia Medica.
By means of a facile method, sixty analogs of 4-, 6-, and 9phenylphenalenone were synthesized, of which forty-nine compounds are novel. These synthesized compounds were first evaluated for their biological activities against phytopathogenic fungi (Alternaria solani, Cercospora arachidicola, Fusarium omysporum, Gibberella zeae, and Physalospora piricola), tobacco mosaic virus (TMV), as well as human cancer cells (p53-wildtype HCT-116 colon cancer cells, p53-mutated HT-29 colon cancer cells, PANC-1 pancreatic cancer cells, and PC-3 prostate cancer cells) systematically. 9 o was sufficiently effective against all the tested phytofungal strains and is worth further structural optimization for developing into a more potent fungicidal agent. Some effects of 6 o and 9 d (inactivation, curing, or protection) against TMV infection were more efficient than the commercial antiviral agents ribavirin and ningnanmycin. These could be selected as potential antiviral lead compounds. With regards to cytotoxicity, the cytotoxic compounds 6 p (IC 50 1.6 μM in HCT-116 cells) and 9 c (IC 50 2.6 μM in PC-3 cells) are worth further structural modification to achieve a higher antitumor potency.
Introduction: The plant Patrinia villosa Juss. (PV) has long been used as a medicinal herb for treating intestinal disorders. Pharmacological activities such as anti-oxidation, anti-inflammation, and anti-cancer effects of compounds isolated from PV have been reported, but these bioactive compounds were not derived from PV water extract (PVW). Therefore, in the present study, we aimed to identify the active component(s) of PVW which exhibit inhibitory activities in colon cancer cells viability and migration.Methods: Human colon cancer HCT116 cells were treated with the isolated compounds of PVW and then subjected to MTT and transwell migration assays.Results: Our results showed that an active compound in PVW, 8,9-didehydro-7-hydroxydolichodial (DHD) inhibited cell viability of HCT116 cells, with IC50 value at 6.1 ± 2.2 μM. Interestingly, DHD was not detected in the herbal material of PV. Further investigation revealed that DHD is in fact a heat-generated compound derived from a natural compound present in PV, namely valerosidate. Valerosidate also reduced cell viability in HCT116 cells, with IC50 value at 22.2 ± 1.1 μM. Moreover, both DHD (2.75 μM) and valerosidate (10.81 μM) suppressed cell migration in HCT116 cells, with inhibitory rates at 74.8% and 74.6%, respectively. In addition, western blot results showed that DHD (5.5 μM) could significantly increase p53 expression by 34.8% and PTEN expression by 13.9%, while valerosidate (21.6 μM) could increase expressions of p53 and PTEN by 26.1% and 34.6%, respectively in HCT116 cells after 48 h treatment.Discussion: Taken together, this is the first report that a naturally-occurring valerosidate present in PV could actually transform to DHD by thermal hydrolysis, and both compounds exhibited inhibitory effects on cell viability and migration in HCT116 cells via increasing the expressions of tumor suppressors (p53 and PTEN). Our findings demonstrated that valerosidate is present in raw herb PV but not in PVW, while DHD is present in PVW rather than in raw herb PV. This difference in chemical profiles of raw herb and boiled water extract of PV may affect the anti-cancer activity, and hence further investigations are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.