This paper deals with the blast-resistant performance of steel fiber-reinforced concrete (SFRC) and polyvinyl alcohol (PVA) fiber-reinforced concrete (PVA-FRC) panels with a contact detonation test both experimentally and numerically. With 2% fiber volumetric content, SFRC and PVA-FRC specimens were prepared and comparatively tested in comparison with plain concrete (PC). SFRC was found to exhibit better blast-resistant performance than PVA-FRC. The dynamic mechanical responses of FRC panels were numerically studied with Lattice Discrete Particle Model-Fiber (LDPM-F) which was recently developed to simulate the meso-structure of quasi-brittle materials. The effect of dispersed fibers was also introduced in this discrete model as a natural extension. Calibration of LDPM-F model parameters was achieved by fitting the compression and bending responses. A numerical model of FRC contact detonation was then validated against the blast test results in terms of damage modes and crater dimensions. Finally, FRC panels with different fiber volumetric fractions (e.g., 0.5%, 1.0% and 1.5%) under blast loadings were further investigated with the validated LDPM-F blast model. The numerical predictions shed some light on the fiber content effect on the FRC blast resistance performance.
Underwater torpedoes have become a serious threat to ocean liners and warships, and the interception against attacking torpedoes is always the hotspot in marine engineering. To simulate the underwater torpedo interception by a high velocity projectile, this work numerically deals with the process of projectile water entry and sequent penetration into underwater aluminum shells, whereby conical and ogival nose projectiles are comparatively studied. With the arbitrary Lagrange–Euler (ALE) algorithm adopted to describe fluid medium, the projectile water entry model is developed and validated against the test data. Similarly, the penetration model validation is made by modeling a tungsten ball perforation on an aluminum plate. Covered by water fluid, the air-backed aluminum shell is utilized to simulate an underwater torpedo subjected to projectile impact. The numerical predictions of underwater penetration reveal that ogival nose projectiles have a superior performance in underwater motion and perforation while conical nose counterparts deteriorate the shell targets more severely. For 20 cm, 40 cm and 60 cm underwater depth scenarios, a numerical prediction suggests that the energy consumed by water is proportional to the water depth, meanwhile aluminum shell perforation absorbs almost the identical projectile kinetic energy. Such findings may shed some light on the nose shape optimization design of high velocity projectile intercepting underwater torpedoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.