Background and Aim
During this COVID‐19 pandemic, Taiwan is one of the few countries where fecal immunochemical test and endoscopic activity for colorectal cancer screening keeps ongoing. We aimed to investigate how screening uptake and colonoscopy rate were affected in one of the biggest screening hubs in Northern Taiwan.
Methods
We conducted a prospective observational study tracing and analyzing the screening uptake and the trend of compliance to diagnostic colonoscopy in fecal immunochemical test‐positive subjects in the National Taiwan University Hospital screening hub since the outbreak of COVID‐19 and compared it with that of the corresponding periods in the past 3 years. Cancellation and rescheduling rates of colonoscopy and related reasons were also explored.
Results
Screening uptake during December 2019 to April 2020 was 88.8%, which was significantly lower than that in the corresponding period of the past 3 years (91.2–92.7%,
P
for trend < 0.0001). Colonoscopy rate in this period was 66.1%, which was also significantly lower than that in the past 3 years (70.2–77.5%,
P
for trend = 0.017). Rescheduling or cancellation rate was up to 10.9%, which was significantly higher than that in the past 3 years (
P
for trend = 0.023), and half of them was due to the fear of being infected.
Conclusion
Fecal immunochemical test screening was significantly affected by COVID‐19 pandemic. In order to resume the practice in COVID‐19 era, screening organizers should consider various approaches to secure timely diagnosis of colorectal cancer.
Transforming growth factor-β (TGF-β)/Smad signaling plays a key role in excessive fibrosis and keloid formations. Smad7 is a negative feedback regulator that prevents activation of TGF-β/Smad signaling. However, the regulatory mechanism for Smad7 in the keloid pathogenic process remains elusive. Here, we show that expression of TIEG1 is markedly higher in keloid fibroblasts, whereas protein, mRNA, and promoter activity levels of Smad7 are decreased. When TIEG1 was knocked down with small interfering RNA, both the promoter activity and protein expression of Smad7 were increased, whereas collagen production and the proliferation, migration, and invasion of keloid fibroblasts were decreased. In contrast, TIEG1 overexpression led to a decrease in Smad7 expression and Smad7 promoter activity. Upon TGF-β1 stimulation, TIEG1 promoted Smad2 phosphorylation by down-regulating Smad7. Luciferase reporter assays and chromatin immunoprecipitation assays further showed that TIEG1 can directly bind a GC-box/Sp1 site located between nucleotides -1392 and -1382 in the Smad7 promoter to repress Smad7 promoter activity. Taken together, these findings show that TIEG1 is highly expressed in human keloids and that it directly binds and represses Smad7 promoter-mediated activation of TGF-β/Smad2 signaling, thus providing clues for development of TIEG1 blocking strategies for therapy or prophylaxis of keloids.
Preventing fibrosis or hypertrophic scar formation following tissue damage is still a big challenge despite the numerous approaches clinicians currently use. Hitherto, no written account was available of a successful case of scarless skin healing after a severe burn injury. Here, we report the first case of the "perfect regenerative healing" of a severe burn wound with no hypertrophic scar formation in which a postage stamp skin autograft was covered with human cytotoxic-T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) gene-transferred pig skin. We also discuss the mechanisms involved in the scarless healing of human burn wounds.
Background: Immunotherapy with checkpoint inhibitors usually has a low response rate in some cutaneous melanoma (CM) cases due to its cold nature. Hence, identification of hot tumors is important to improve the immunotherapeutic efficacy and prognoses of CMs.Methods: Fatty acid (FA) metabolism-related genes were extracted from the Gene Set Enrichment Analysis and used in the non-negative matrix factorization (NMF), copy number variation frequency, tumor mutation burden (TMB), and immune-related analyses, such as immunophenoscore (IPS). We generate a risk model and a nomogram for predicting patient prognoses and predicted the potential drugs for therapies using the Connectivity Map. Moreover, the NMF and the risk model were validated in a cohort of cases in the GSE65904 and GSE54467. At last, immunohistochemistry (IHC) was used for further validation.Results: Based on the NMF of 11 FA metabolism-related DEGs, CM cases were stratified into two clusters. Cluster 2 cases had the characteristics of a hot tumor with higher immune infiltration levels, higher immune checkpoint (IC) molecules expression levels, higher TMB, and more sensitivity to immunotherapy and more potential immunotherapeutic drugs and were identified as hot tumors for immunotherapy. The risk model and nomogram displayed excellent predictor values. In addition, there were more small potential molecule drugs for therapies of CM patients, such as ambroxol. In immunohistochemistry (IHC), we could find that expression of PLA2G2D, ACOXL, and KMO was upregulated in CM tissues, while the expression of IL4I1, BBOX1, and CIDEA was reversed or not detected.Conclusion: The transcriptome profiles of FA metabolism-related genes were effective for distinguishing CM into hot–cold tumors. Our findings may be valuable for development of effective immunotherapy for CM patients and for proposing new therapy strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.