Improving the survivability of critical loads after extreme events is essential to enhance the resilience of power systems, especially for distribution networks. A distribution network with various operational resources can be separated into several sub-distribution networks without electrical connections. Maintaining the power supply with acceptable power quality to critical loads in such separated distribution networks is a challenging task for the operators of power systems. In this paper, an optimization model is proposed to maximize the ability to supply power to critical loads in distribution networks. Moreover, a GPU was employed to accelerate the proposed model using genetic algorithm. With the acceleration of the GPU platform, the solving time was reduced and the population size can be enlarged to enhance the convergence rate and convergence quality of the algorithm. Finally, case studies were carried out in IEEE 33-bus and 118-bus systems, and the effectiveness of the method was validated by comparing the solution results on GPU and CPU platforms.
Compared with AC systems, HVDC systems are more flexible and potentially contribute to enhancing system resilience. Currently, three types of HVDC technologies, LCC-HVDC (Line-commutated Current-sourced Converters, LCC), VSC-HVDC (Voltage Sourced Converter, VSC), and MMC-HVDC (Modular-Multilevel-Converter, MMC), are applied in practical projects. All types of HVDC systems can be applied to stabilize the system frequency of AC power systems and facilitate system recovery after extreme natural events. The operation characteristics, methods, and control strategies of different HVDC technologies for facilitating system operation are reviewed herein; it is indicated that HVDC technology is an effective solution for enhancing system resilience. Renewable resources, energy storage systems, and demand response devices can be coordinated well with HVDC systems. The frequency and voltage regulation ability of power systems and the black start ability can be enhanced by introducing HVDC systems into power systems. Several isolated AC power systems can be connected to HVDC systems. These AC systems can interact with other AC systems through HVDC systems by conforming to their operational characteristics and constraints. The resilience of these AC systems can be enhanced by these interactions. Additionally, related operation methods and control strategies will also be reviewed. JEL CLASSIFICATION Power electronics, electric power applicationsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.