The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM) analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.
Proteolytic processing and degradation of enamel matrix proteins appears to be an essential feature of dental enamel formation. The source and character of proteolytic activity in the enamel matrix of developing teeth changes as enamel formation progresses. Two proteinases have been isolated from the extracellular enamel matrix of developing teeth: enamelysin (MMP-20), a matrix metalloproteinase. and kallikrein-4 (KLK4), a serine proteinase. Here, we ask if the expression of MMP-20 and KLK4 correlate with the stage-associated changes in the digestion of enamel proteins. Using in situ hybridization, we localized MMP-20 and KLK4 mRNA in mouse maxillary first molars on postnatal days 1, 2, 3, 5, 6, 7, 9, 11, and 14. Enamelysin signal was first detected in preameloblasts, ameloblasts, and odontoblasts on day 2, but not in ameloblasts covering the enamel-free zone. Enamelysin signal declined in ameloblasts on day 6 but persisted in the dental pulp. In contrast, KLK4 transcripts were first observed on day 3 in pulp and on day 6 in ameloblasts covering the enamel-free zone. the KLK4 signal was present in maturation-stage ameloblasts on days 9, 11, and 14. The expression patterns of MMP-20 and KLK4 by ameloblasts in mouse molars are stage-specific and complementary.
Amelogenin and enamelin are structural proteins in the enamel matrix of developing teeth. The temporal and spatial patterns of enamelin expression in developing mouse molars have not been characterized, while controversy remains with respect to amelogenin expression by odontoblasts and cementoblasts. Here we report the results of in situ hybridization analyses of amelogenin and enamelin expression in mouse molars from postnatal days 1, 2, 3, 7, 9, 14, and 21. Amelogenin and enamelin mRNA in maxillary first molars was first observed in pre-ameloblasts on the cusp slopes at day 2. The onsets of amelogenin and enamelin expression were approximately synchronous with the initial accumulation of predentin matrix. Both proteins were expressed by ameloblasts throughout the secretory, transition, and early maturation stages. Enamelin expression terminated in maturation stage ameloblasts on day 9, while amelogenin expression is still detected in maturation stage ameloblasts on day 14. No amelogenin expression was observed in day 21 mouse molars. Amelogenin and enamelin RNA messages were restricted to ameloblasts. No expression was observed in pulp, bone, or along the developing root. We conclude that amelogenin and enamelin are enamel-specific and do not directly participate in the formation of dentin or cementum in developing mouse molars.
Kallikrein-4 (KLK4) is a serine proteinase believed to be important in the normal development of dental enamel. We isolated native KLK4 from developing pig enamel and expressed four recombinant forms. Pig KLK4 was expressed in bacteria with and without the propeptide, and in two eukaryotic systems. Recombinant pig KLK4 was secreted as a zymogen by '293' cells and purified. The proKLK4 was activated in vitro by thermolysin and recombinant pig enamelysin, but not by native KLK4. These results were confirmed using a fluorescent peptide analog of the KLK4 propeptide-enzyme junction. Native KLK4 appears as a doublet at 37 kDa and 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Removal of N-linked oligosaccharides by digestion with deglycosidase-F reduced the doublet to a single band at approximately 28 kDa, demonstrating that the active enzyme is glycosylated, and that the 37 kDa and 34 kDa forms differ only in their number of glycosylations. Deglycosylation was also associated with a loss of proteolytic activity. We digested recombinant pig amelogenin with native KLK4 and characterized the cleavage products by N-terminal sequencing and mass spectrometry. Eleven cleavage sites in the amelogenin protein were identified, demonstrating that KLK4 degrades amelogenin and is likely to participate in the degradation of enamel proteins in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.