Based on the comprehensive experimental test-bed of blast furnace slag waste heat recovery, we study the impacts which are caused by the changes of the key parameters, such as blast furnace slag discharged temperature, the speed of the granulation device, on the particle diameter distribution and sphericity, so as to master the best operating parameters of the blast furnace slag dry granulation, and provide experimental basic materials for blast furnace slag waste heat recovery. The results show that: when the discharged temperature of the blast furnace slag is controlled in 1400°C~1450°C, and the speed of the granulation device is controlled above 2000r/min, the sphericity is better, and 80% of the particle’s diameter will be 2~5mm.
In this paper, a novel biomass pyrolysis and liquefaction system using blast furnace as heating source was presented. The system is composed of three parts: blast furnace slag granulation, biomass pyrolysis centrifuge reactor, and the waste heat of blast furnace as the heat source. As the cost of biomass pyrolysis was greatly reduced, this system has a promising application prospect.
A novel biomass pulverization technology was presented, and its performance is affected by many aspects, which have not been studied and optimized. This paper mainly concerns with a detailed study of the effect of rotor speed. The pulverization tests were conducted in a lab-scale crushing system and the results show: higher rotor speed improves the hit probability between blades and materials, enhancing the impacting and grinding effects. Thus higher rotor speed generates much finer particles. Meanwhile the energy consumption shows increasing trend with increasing rotor speed.
The wheat precision seeding technology provided an advanced agricultural protection for the high yield of wheat. But the lack of an effective agricultural machine made this technology difficult to apply widely. In this paper a quadruped wheel robot to achieve the wheat precision seeding technology was designed. And experimental study was taken under different operating conditions. Because of multiple effort factors, a quadratic orthogonal rotation combination design method was applied in the experiments, and identifying the main factors by analysis. Then the field test was carried out according to the main factors. The experiment results showed that the qualified rates of seeding exceed 93% in different sowing speed. That reached the agronomic requirements of wheat precision seeding.
Targeting at the ambient noise test of a large-scale fan, a sparse measurement method is proposed to deal with placing test-points. According to the acoustic and propagational characteristics of fan noise and the principle of sound pressure test, the sparsification of test-points is presented for optimizing the microphone locations. The outdoor ambient sound pressures of fan noise are tested at the sparse points and processed by time-frequency refinement analysis. As results of that, sparse measurement can obtain the messages of sound field effectively and thus get a comprehensive evaluation on the noise. This study extends the application of sound pressure test and provides a base for quantitative sparse measurement on ambient noises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.