Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Emerging data have linked certain features of clinical prostate cancer (PCa) to obesity and, more specifically, increased adiposity. Whereas the large number of clinical studies and meta-analyses that have explored the associations between PCa and obesity have shown considerable variability, particularly in relation to prostate cancer risk, there is an accumulating weight of evidence consistently linking obesity to greater aggressiveness of disease. In probing this association mechanistically, it has been posited that peri-prostatic adipose tissue (PPAT), a significant component of the prostate microenvironment, may be a critical source of fatty acids and other mitogens and thereby influences PCa pathogenesis and progression. Notably, several recent studies have identified secreted factors from both PPAT and PCa that potentially mediate the two-way communication between these intimately linked tissues. In the present review, we summarize the available literature regarding the relationship between PPAT and PCa, including the potential biological mediators of that relationship, and explore emerging areas of interest for future research endeavours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.