Infection and inflammation serve an important role in tumor development. Toll-like receptor 4 (TLR4) is a pivotal component of the innate and adaptive immune response during infection and inflammation. Programmed-death ligand 1 (PD-L1) is hypothesized as an important factor for non-small cell lung cancer (NSCLC) immune escape. In the present study, the relationship between TLR4 and PD-L1, in addition to the associated molecular mechanism, were investigated. TLR4 and PD-L1 expression in lung cancer tissues were detected using immunohistochemistry, whilst overall patient survival was measured using the Kaplan-Meier method. The A549 cell line stimulated using lipopolysaccharide (LPS) was applied as the in vitro inflammatory NSCLC model. Associated factors were investigated using reverse transcription-quantitative PCR and western blotting. Lung cancer tissues exhibited increased PD-L1 and TLR4 levels compared with those of adjacent para-cancerous tissues, where there was a positive correlation between TLR4 and PD-L1 expression. In addition, increased expression of these two proteins was found to be linked with poorer prognoses. Following the stimulation of A549 cells with LPS, TLR4 and PD-L1 expression levels were revealed to be upregulated in a dose-dependent manner, where the ERK and PI3K/AKT signaling pathways were found to be activated. Interestingly, in the presence of inhibitors of these two pathways aforementioned, upregulation of PD-L1 expression was only inhibited by the MEK inhibitor PD98059, which can inhibit ERK activity. These data suggested that the ERK signaling pathway is necessary for the TLR4/PD-L1 axis. In conclusion, data from the present study suggest that TLR4 and PD-L1 expression can serve as important prognostic factors for NSCLC, where TLR4 activation may induce PD-L1 expression through the ERK signaling pathway.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death worldwide.Accumulating researches have highlighted the ability of exosome-encapsulated microRNAs (miRNAs or miRs) as potential circulating biomarkers for lung cancer. The current study aimed to evaluate the significance of mesenchymal stem cells (MSCs)-derived exosomal miR-204 in the invasion, migration, and epithelial-mesenchymal transition (EMT) of NSCLC cells. Initially, the expression of miR-204 in human NSCLC tissues and cells was determined by RT-qPCR, which demonstrated that miR-204 was downregulated in NSCLC tissues and cells. Next, Krüppel-like factor 7 (KLF7) was predicted and validated to be a target of miR-204 using dual-luciferase reporter gene assay. NSCLC A549 cells were treated with MSCs-derived exosomes, after which the migration and invasion of A549 cells were detected and expression of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin), KLF7, p-AKT/AKT, and HIFresults of gain-and loss-of-function assays revealed that miR-204 overexpression in MSCs-derived exosomes inhibited KLF7 expression and the AKT/HIF-impaired cell migration, invasion, as well as EMT. In conclusion, the key findings of the current study demonstrate that exosomal miR-204 from MSCs possesses anticarcinogenic properties against NSCLC via the KLF7/AKT/HIF-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.