Hydro energy is a kind of typical renewable energy, which can be converted by hydraulic machinery. However, tip leakage vortex (TLV) has a significant negative influence on the flow pattern and energy performance of hydraulic machinery. In this paper, a bending shrinkage groove (BSG) is proposed to suppress the TLV and improve the energy performance of a hydrofoil first, and then a parametric optimization design method is briefly introduced and applied to determine the optimal configuration of the groove. The main geometric parameters of the groove are selected as optimized variables and three different groove configurations are selected from the optimization result. Finally, the performance improvement of the hydrofoil with groove, the sensitivity analysis of the optimization variables, and the groove impacts on the TLV and flow patterns are investigated. The results demonstrate that the preferred groove reduces the non-dimensional Q criterion vortex isosurfaces area (Qarea = 2 × 107) by 5.13% and increases the lift drag ratio by 17.02%, comparing to the origin hydrofoil. Groove depth d and groove width w are proved to have more significant impacts on the hydrofoil energy performance. The TLV and flow patterns are greatly affected by the different BSG configurations, and the wider BSG contributed to reducing the area of TLV, at the cost of energy performance deterioration.
In the present paper, the effect of the proposed T-shape tip on the energy performance, flow patterns and broadband noise sources of a NACA0009 hydrofoil with tip clearance is investigated. The vortex induced by the gap is simulated by means of the SST k-ω turbulence model, and then, the noise generated by dipoles and quadrupoles are analyzed by using the Curle acoustic analogy and Proudman acoustic analogy, respectively. The numerical simulation results agree well with the experimental measurements. Results indicate that three tip shapes, including the half pressure side T-shape model (MPT), the half suction side T-shape model (MST) and the T-shape model (MT), have complex influence on energy performance of the foil. Only the MST model can promote the energy performance of the hydrofoil at all inlet velocities, with the maximum ratio of lift coefficient to drag coefficient increasing by 4.26%. In addition, the ratio of lift coefficient to drag coefficient for MT obviously increases when the inlet velocity is 7.5 m/s, 10 m/s, 12.5 m/s and 15 m/s, and the maximum promotion is 15.21% at 7.5 m/s. The T-shape tip can effectively suppress the tip clearance leakage vortex, which makes the vortex area decrease with a maximum drop of 5.02%. Furthermore, the MPT and MT have good suppression effect on the hydrofoil dipole noise, and reduce the maximum Curle Acoustic Power (AP) of the foil with 2.64% and 3.03%, respectively. The MST model obviously reduces the isosurface area of the Proudman AP by 6.55% for 55 dB.
The aim of this study is to determine the electromagnetic field spatial distribution and longitudinal end effect characteristics of short primary linear induction motor (SPLIM) in the field of electromagnetic launch. First, in accordance to the electromagnetic model assumption of SPLIM and one‐dimensional electromagnetic field theory, the analytical expression of the whole‐region magnetic flux density of air‐gap is derived using electromagnetic field boundary conditions in line with the actual physical meaning. Second, the finite element method used in comparing the analytical calculation values of key physical quantities, such as air‐gap flux density and secondary eddy current in a multidimensional manner under various static and dynamic working conditions and verifying the correctness of the analytical calculation of the electromagnetic field. On this basis, the air‐gap flux density of SPLIM is decomposed according to the different generation mechanisms, and the spatial distribution of each part of the flux density is studied. Spatial Fourier analysis of flux density is conducted, the end effect coefficient is defined, and the change rule of the end effect coefficient with the design parameters of the motor is studied. Finally, a megawatt‐class high thrust prototype test platform was built, and the measured electromagnetic force was compared with the electromagnetic force calculated by air gap magnetic field and secondary eddy current. The steady‐state error of the two was less than 2%, which verified the accuracy of the analysis and calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.