Neurons in the human medial temporal lobe (MTL) that are selective for the identity of specific people are classically thought to encode identity invariant to visual features. However, it remains largely unknown how visual information from higher visual cortex is translated into a semantic representation of an individual person. Here, we show that some MTL neurons are selective to multiple different face identities on the basis of shared features that form clusters in the representation of a deep neural network trained to recognize faces. Contrary to prevailing views, we find that these neurons represent an individual’s face with feature-based encoding, rather than through association with concepts. The response of feature neurons did not depend on face identity nor face familiarity, and the region of feature space to which they are tuned predicted their response to new face stimuli. Our results provide critical evidence bridging the perception-driven representation of facial features in the higher visual cortex and the memory-driven representation of semantics in the MTL, which may form the basis for declarative memory.
People readily (but often inaccurately) attribute traits to others based on faces. While the details of attributions depend on the language available to describe social traits, psychological theories argue that two or three dimensions (such as valence and dominance) summarize social trait attributions from faces. However, prior work has used only a small number of trait words (12 to 18), limiting conclusions to date. In two large-scale, preregistered studies we ask participants to rate 100 faces (obtained from existing face stimuli sets), using a list of 100 English trait words that we derived using deep neural network analysis of words that have been used by other participants in prior studies to describe faces. In study 1 we find that these attributions are best described by four psychological dimensions, which we interpret as “warmth”, “competence”, “femininity”, and “youth”. In study 2 we partially reproduce these four dimensions using the same stimuli among additional participant raters from multiple regions around the world, in both aggregated and individual-level data. These results provide a comprehensive characterization of trait attributions from faces, although we note our conclusions are limited by the scope of our study (in particular we note only white faces and English trait words were included).
The need for further research in this area is necessary to reduce the burden of back pain on employees and their families, employers, and the health care system.
Children with mild traumatic brain injuries have an increased frequency of receiving the concussion label, although the label may also be applied to children with more-severe injuries. The concussion diagnosis is associated with important clinical outcomes. Its typical use in hospital settings likely refers to an impact-related mild brain injury, in the absence of indicators other than a loss of consciousness. Clinicians may use the concussion label because it is less alarming to parents than the term mild brain injury, with the intent of implying that the injury is transient with no significant long-term health consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.