Heat transfer is perhaps the most critical parameter in the processing of thermoplastic matrix composites. Temperature distribution affects the quality and microstructure of the final product in that flow, compaction, melting, and crystallization are thermally controlled processes. Using readily available thermal properties of the composites, a model that predicts the temperature profile within a composite laminate during processing was developed. Graphite-reinforced thermoplastic composites of various thicknesses, up to 80 plies, were fabricated and used to validate the analytical thermal profiles. When compared with empirical measurements, the heat transfer model was shown to generate highly accurate temperature distributions within the composites under various processing conditions. When correlated with the dynamic viscosities of the polymer at various temperatures, t-T-V profiles of the composites during processing can then be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.