Coral bleaching, triggered by elevated sea-surface temperatures (SSTs) has caused a decline in coral cover and changes in the abundances of corals on reefs worldwide. Coral decline can be exacerbated by the effects of local stressors like turbidity, yet some reefs with a natural history of turbidity can support healthy and resilient coral communities. However, little is known about responses of coral communities to bleaching events on anthropogenically turbid reefs as a result of recent (post World War II) terrestrial runoff. Analysis of region-scale coral cover and species abundance at 17–20 sites on the turbid reefs of Okinawa Island (total of 79 species, 30 genera, and 13 families) from 1995 to 2009 indicates that coral cover decreased drastically, from 24.4% to 7.5% (1.1%/year), subsequent to bleaching events in 1998 and 2001. This dramatic decrease in coral cover corresponded to the demise of Acropora species (e.g., A. digitifera) by 2009, when Acropora had mostly disappeared from turbid reefs on Okinawa Island. In contrast, Merulinidae species (e.g., Dipsastraea pallida/speciosa/favus) and Porites species (e.g., P. lutea/australiensis), which are characterized by tolerance to thermal stress, survived on turbid reefs of Okinawa Island throughout the period. Our results suggest that high turbidity, influenced by recent terrestrial runoff, could have caused a reduction in resilience of Acropora species to severe thermal stress events, because the corals could not have adapted to a relatively recent decline in water quality. The coral reef ecosystems of Okinawa Island will be severely impoverished if Acropora species fail to recover.
Forecasting rice yield before harvest time is important to supporting planners and decision makers to predict the amount of rice that should be imported or exported and to enable governments to put in place strategic contingency plans for the redistribution of food during times of famine. This study used the Normalized Difference Vegetation Index (NDVI) of Landsat Enhanced Thematic Mapper plus (ETM+) images of rice plants to estimate rice yield based on field observation. The result showed that the rice yield could be estimated using the exponential equation of y = 0.3419e4.1587x, where y and x are rice yield and NDVI, respectively. The R2 and SE of the estimation were 0.852 and 0.077 ton/ha, respectively. An accuracy assessment of rice yield estimation using Landsat images was performed by comparing the rice yields from the estimation result and the reference data. The results show that the linear relationship with the R2 and SE of the estimation were 0.9262 and 0.21 ton/ha, respectively. The R2 is greater than or equal to 0.8, which demonstrates a strong agreement between the remotely sensed estimation and the reference data. Thus, the Landsat ETM+ has good potential for application to rice yield estimation.
Okinawa, Japan is known for its high marine biodiversity, yet little work has been performed on examining impacts of numerous large-scale coastal development projects on its marine ecosystems. Here, we examine apparent impacts of the construction of the Kaichu-Doro causeway, which was built over 40 years ago. The causeway is a 4.75 km long embankment that divides a large tidal flat and has only two points of water exchange along its entire length. We employed quadrats, transects, sampling, visual surveys, and microbial community analyses combined with environmental, water quality data, and 1m cores, at five stations of two paired sites each (one on each side of Kaichu-Doro) to investigate how the environment and biota have changed since the Kaichu-Doro was built. Results indicate reduction in water flow, and site S1 was particularly heavily impacted by poor water quality, with low diversity and disturbed biotic communities.
[1] Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height, H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.
Coral reefs have been threatened by various human and natural environmental disturbances, especially by widespread water temperature increases in 1997/1998. To understand the recovery of coral communities and shifts in their species compositions, long-term monitoring at the same location is important. Previously, we reported changes in the dominant taxa in a coral community before and after bleaching in 1998 at Shiraho Reef in the southern Ryukyus, Japan. In the present study, we continued monitoring the site for 15 yr to quantify how the coral community changed temporally and spatially. We used transect surveys and time-series aerial photographs and analysed the data with reference to seawater temperature and typhoon records. Net coral area along the transect lines increased from 1998 to 2003, but then decreased by 2008 mostly due to a decline in branching Montipora spp. The resulting net coral area was lower in 2012 than it was before the 1998 bleaching event. Aerial photographs also showed that the coral area at Shiraho Reef was similar between 1995 and 2000, but declined afterward. This decrease resulted from multiple disturbances, including bleaching events in 1998 and 2007, physical damage by 5 consecutive strong typhoons and likely inputs of sediments from heavy rain. Coral taxa reacted differently to the environmental stresses. The main change observed was a shift in the dominant taxa from branching Montipora and Acropora to Heliopora coerulea and massive and branching Porites. Those species have persisted due to high recruitment rates in H. coerulea and/or their tolerance to disturbances such as high thermal stresses, sedimentation and physical damage by typhoons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.